“ n icolae b icincescu” l and f orces a decademy,s ibiu,r amania a a btract:智能子弹,在国防高级研究项目局(DARPA)等计划中开发的智能子弹,代表了精确战争的突破性进步。本文对智能子弹技术进行了全面的审查和批判性分析,探讨了其技术复杂性,军事应用,道德意义,经济考虑以及未来的前景。通过整合先进的光学传感器,指导系统和机动性机制,智能子弹在战场上实现了无与伦比的精度和致命性。军事应用范围从精确定位到快速的多种威胁,在战斗效力方面具有显着优势。但是,关于平民伤亡,扩散风险和问责制问题的道德问题需要仔细考虑。此外,经济观点强调了与智能子弹技术商业化相关的潜在成本节省和道德困境。展望未来,AI,材料科学和小型化的进步有望进一步增强能力。尽管如此,必须解决持续的道德,法律和技术挑战,必须确保对军事行动中的智能子弹技术负责和道德使用,从而有助于全球安全和稳定。k eywords:
此外,还开发了准确、精密的短期和长期海浪和天气预报系统。在构件运输和浸没作业之前的一段时间内,该系统能够将预报的浪高精度控制在 10 厘米以内,从而可以在可接受的风险范围内进行浸没作业。隧道构件(TE)在预制场(PC)分批建造。码头淹没后,构件被运输到靠近 PC 场的系泊地点进行装配并等待有利的浸没天气。构件使用两个双体船浮筒浸没,并放置在海床上先前挖出的沟渠中。采用了绷紧系泊配置,以将海浪影响的运动降至最低。锚点由预先安装的板锚创建。由于隧道的总长度和安装深度,使用塔和全站仪的传统测量系统并不适用。因此,开发了新的测量方法,其中包括在浸没操作期间用于定位元件的拉线系统和超短基线 (USBL) 声学系统。使用专门设计的外部定位系统 (EPS) 对受波浪影响的 TE 进行精确定位,并将其放置在预先铺设的砂砾床上。
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
近年来,传统的 MEMS 微致动器已由通过双光子聚合 (2PP) 制造的 3D 打印可驱动微结构所补充。本文展示了一种新型紧凑型 3D 打印磁驱动微致动器,其直径为 500 μ m,最初设计用于微光学系统。它是通过在简单的后处理步骤中将 NdFeB 微粒和环氧树脂的复合材料并入打印机械结构的指定容器中而制造的。微致动器结构具有机械弹簧,允许在大位移下进行连续定位。通过对 IP-S 块体结构进行纳米压痕的机械研究揭示了一种粘弹性材料行为,可通过二元素通用开尔文-沃格特粘弹性模型来描述。然后使用获得的材料参数来模拟和表征微致动器的弹簧行为。使用外部微线圈进行驱动实验。测量了峰值电流为 106 mA、持续时间为 1 至 100 秒的三角电流脉冲的执行器位移,导致位移为 69.1 至 88.9 μ m。观察到执行器的滞后行为,这归因于芯材料的粘弹性和磁性。实验的数值模拟也证明了这种行为。实时退磁和闭环控制的实施可实现高重复性和精确定位。
将胶体量子发射器确定性地整合到硅基光子器件中将推动量子光学和纳米光子学的重大进展。然而,将 10 纳米以下的粒子以纳米级精度精确定位到微米级光子结构上仍然是一项艰巨的挑战。在这里,我们引入了腔形调制折纸放置 (CSMOP),它利用 DNA 折纸的形状可编程性,选择性地将胶体纳米材料沉积在光刻定义的光刻胶腔内,这些光刻胶腔被图案化到任意光子器件上,具有高产量和方向控制。软硅化钝化可稳定沉积的折纸,同时保留其空间可编程的 DNA 杂交位点,从而实现等离子体金纳米棒 (AuNR) 和半导体量子棒 (QR) 的位点特异性附着。这分别提供了对光散射和发射偏振的控制,并在氮化硅波导、微环谐振器和靶心腔内确定性地集成了单个 QR。因此,CSMOP 为胶体纳米材料集成到光子电路中提供了一个通用平台,具有为量子信息科学和技术提供强大推动力的广阔潜力。
3. M57 陆军战术导弹系统 (ATACMS) — 单元式导弹是一种常规半弹道导弹,使用 500 磅高爆弹头。它的有效射程在 70 至 300 公里之间,由于采用了 GPS/精确定位系统 (PPS) 辅助导航系统,其杀伤力和准确性比以前的 ATACMS 版本更高。 4. M31A2 GMLRS 单元式导弹是美国陆军为使用 M142 HIMARS 和 M270Al 多管火箭发射系统 (MLRS) 发射器的部队提供的主要弹药。M31 单元式导弹是一种固体推进剂火箭,使用全球定位系统/精确定位服务 (GPS/PPS) 辅助惯性制导,可准确、快速地向 15 至 70 公里范围内的目标发射单个高爆破片弹头。火箭弹从发射舱发射,发射舱也用作火箭弹的储存和运输容器。每个火箭弹舱共可容纳六 (6) 枚火箭弹。5. M30A2 GMLRS 替代弹头与 M31A1 单一弹头有 90% 以上的共同点。GMLRS–U 和 GMLRS–-AW 之间的主要区别在于,单一弹头的高爆弹头被 200 磅预制钨穿甲弹头取代,这种弹头经过优化,可有效打击大面积和位置不精确的目标。除此之外,这两种弹药还共用一个发动机、GPS/PPS 辅助惯性制导和控制系统、引信机构、多选项爆炸高度
摘要 — 在当前的嘈杂中尺度量子 (NISQ) 量子计算时代,量子比特技术容易出现缺陷,从而导致各种错误,例如门错误、退相干/失相、测量错误、泄漏和串扰。这些错误对在 NISQ 设备中实现无错误计算提出了挑战。针对此问题提出的解决方案是量子纠错 (QEC),旨在通过三步过程纠正损坏的量子比特状态:(i) 检测:识别错误的存在,(ii) 解码:精确定位受影响量子比特的位置,以及 (iii) 校正:将故障量子比特恢复到其原始状态。QEC 是一个不断扩展的研究领域,涵盖了复杂的概念。在本文中,我们旨在全面回顾量子纠错的历史背景、现状和未来前景,以满足对量子物理及其相关数学概念不太熟悉的计算机科学家的需求。在本研究中,我们 (a) 解释 QEC 的基本原理并探索用于纠正量子比特错误的现有量子纠错码 (QECC),(b) 探索这些 QECC 在实施和纠错质量方面的实用性,以及 (c) 强调在当前 NISQ 计算机环境下实施 QEC 所面临的挑战。索引术语 — 量子纠错、量子计算、纠错码
靶向药物的开发使得癌症治疗可以实现精准医疗,并实现最佳的靶向治疗。准确识别癌症药物基因有助于加强对癌症靶向治疗的认识,促进癌症的精准治疗。然而,由于多组学数据的多样性和复杂性,发现的癌症药物基因非常少见。本研究提出了一种基于机器学习的癌症药物基因发现新方法DF-CAGE。DF-CAGE整合了~10000个TCGA谱中的体细胞突变、拷贝数变异、DNA甲基化和RNA-Seq数据,以识别癌症药物基因的概况。我们发现DF-CAGE从多组学数据的角度发现了目前已知的癌症药物基因的共性,并在OncoKB、Target和Drugbank数据集上取得了优异的表现。在~20,000个蛋白质编码基因中,DF-CAGE精确定位了465个潜在的癌症药物基因。我们发现候选癌症药物基因(CDG-基因)具有临床意义,可分为高可信、可靠和潜在基因集。最后,我们分析了组学数据对药物基因识别的贡献。我们发现DF-CAGE主要根据CNA数据、基因重排和人群中的突变率来报告药物基因。这些发现可能对未来新药的研究和开发有所启发。
