结果:从怀孕生殖道(污染控制)的外表面培养了87种独特的细菌,并从妊娠组织培养的12种细菌物种。10头牛中有6个(60%)在怀孕子宫内的至少一个位置表现出细菌生长。对于元学结果(16S rRNA基因测序),鉴定出低靶向微生物生物量。对检测到的扩增子序列变体(ASV)的分析表明,有:(1)属在外表面和怀孕子宫内都普遍存在; (2)在外表面上盛行但未检测到的属,或者在怀孕子宫内未被检测到非常低的患病率; (3)未检测到的属或在外表面患病率较低但在怀孕子宫内的患病率相对较高。
引言钻石黑芬贫血(DBA,OMIM#105650)是一种骨髓衰竭(BMF)综合征,其为原始的,其特征在于红细胞内多症(1)。此外,据报道DBA患者的骨髓增生性合成剂,急性髓样白血病和实体瘤的发生率增加(2)。DBA的估计患病率为每百万活产7例(1)。大多数情况与6个核糖体蛋白(RP)基因中的任何一个(RPS19,RPL5,RPS26,RPL11,RPL11,RPL35A和RPS24)有关。实际上,编码RP的80个基因中的任何一个中的任何一个,以及编码小核糖体亚基的11个基因中的任何一个或编码大型亚基的13个基因中的突变(3)(3)。最常见的RP基因是RPS19(所有DBA病例的25%)(1)。此外,最近的报告
核糖体生物发生的摘要是癌症的标志,促进了对转化需求改变的适应性,这是肿瘤进展的必要方面的必要方面。在核糖体生物发生和癌症中,复杂的互相互相互动,强调了动态调节,由致癌信号传导路径策划了。研究研究核糖体的多卵形作用,Xtending be y ond蛋白f Actories中,将调节功能包括在mRNA翻译中。dy的核糖体生物发生不仅会阻碍对全球蛋白质产生和增殖的精确控制,还影响了诸如维持干细胞样性质和上皮间质转变等过程,导致癌症进展。干扰核糖体生物发生,尤其是通过RNA Pol I抑制作用,引起以核仁完整性丧失为标志的应力反应以及随后的G1细胞周期停滞或细胞死亡。这些发现表明,癌细胞可能依赖于RNA Pol I转录的增强,从而使核糖体RNA合成成为潜在的治疗脆弱性。<部门进一步探讨了靶向核糖体生物发生脆弱性,这是破坏全球核糖体生产的有前途的策略,为癌症治疗带来了治疗机会。
尽管核糖体 DNA 和转座因子都是基因组的显著特征,但乍一看,它们都是没有太多共同点的遗传因子:核糖体 DNA 主要被视为管家基因,支持所有主要基因组功能,而转座因子通常被描绘成自私和破坏性的。这些对立的特征也反映在其他属性中:串联组织(核糖体 DNA)与分散组织(转座因子);协同进化(核糖体 DNA)与多样化进化(转座因子);延长基因组稳定性的活动(核糖体 DNA)与缩短基因组稳定性的活动(转座因子)。回顾已报道的核糖体 DNA-转座因子相互作用的相关实例,我们注意到两种重复类型至少具有四个结构和功能特征:(1)它们是在进化时间尺度上塑造基因组的重复 DNA,(2)它们交换结构基序并可以进入共同进化过程,(3)它们是严格控制的基因组应激传感器,在衰老/老化中发挥关键作用,以及(4)它们具有共同的表观遗传标记,例如 DNA 甲基化和组蛋白修饰。在这里,我们概述了核糖体 DNA 和转座因子的结构、功能和进化特征,讨论了它们的作用和相互作用,并强调了我们在理解核糖体 DNA-转座因子关联方面的趋势和未来方向。
1。1.3.1 Sterile medications ...................................................................... 14 2.1.3.2无菌测试........................................................................................................................................................................................................1.3.3聚合酶链反应(PCR)............................................................................................................................................................................................................................................... 17 4。1.3.4哥伦比亚的PCR研究..........................................................................................................................................................................................................................目标................................................................................................................................................................................................................................................................................
肽天然产品具有多种有用的应用,例如农药,兽医,药物和生物产品。要发现新的天然产物,将它们操纵以产生模拟生成,并利用这些生物活性化合物用于合成生物学的潜力,有必要开发出强大的方法来表达生物合成基因的表达。无细胞的合成生物学正在作为一种重要的互补方法出现,因为它非常需要在更快的时间范围内表达蛋白质,并且不依赖菌株的遗传障碍性,从而改善了设计构建测试的元素循环的吞吐量。此外,在细胞外产生代谢产物可以克服诸如细胞毒性等问题,这些毒性可能会阻碍抗生素发育等应用。在这篇综述中,我们着重于非核糖体肽合成酶产生的肽天然产物的无细胞产生。非ribsomal肽是由非核糖体肽合酶生物合成的,这些肽是大型“巨型”酶,为异源表达提供了特定的挑战。首先,我们总结了在无细胞系统中表达的NRPS及其相应的肽代谢产物。与此相关,我们讨论了在无细胞蛋白质合成中表达如此大蛋白的需求和挑战,以及为无细胞蛋白质合成而开发的宿主机制,这些蛋白质与未来的非核糖体肽代谢物可能特别相关。然后,可以将无细胞系统的开发用于原型制作,以加快这些复杂途径的工程生物合成的努力。
严重交界性大疱性表皮松解症是一种罕见的遗传性产后致死性皮肤病,主要由 LAMB3 基因中的无义/过早终止密码子 (PTC) 序列变体引起。LAMB3 编码 LAMB3,即表皮 e 真皮皮肤锚定层粘连蛋白 332 的 b 亚基。PTC mRNA 的大多数翻译读段都会产生截短的、无功能的蛋白质,而内源性 PTC 读通机制会产生最低水平和不足的全长蛋白质。传统的翻译读通诱导药物会放大内源性 PTC 读通;然而,翻译读通诱导药物要么具有蛋白毒性,要么是非选择性的。核糖体编辑是一种更具选择性且毒性较小的策略。该技术确定了核糖体蛋白 L35/uL29(即 RpL35)和 RpL35 配体可再利用药物青蒿琥酯和阿扎那韦作为增加全长 LAMB3 产量的分子工具。为了评估活细胞中的配体活性,我们通过双荧光素酶报告基因检测监测了青蒿琥酯和阿扎那韦的治疗。青蒿琥酯治疗后全长 LAMB3 的产量水平增加高达 200%,阿扎那韦治疗后增加高达 150%,在降低药物剂量的情况下与 RpL35 配体联合治疗后增加高达 170%,而不相关的 PTC 报告基因无反应。RpL35 配体在选择性增加全长 LAMB3 方面的生物活性证明为补充严重交界性大疱性表皮松解症中的 LAMB3 的替代靶向治疗途径提供了基础。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年8月6日。 https://doi.org/10.1101/2023.08.03.551775 doi:Biorxiv Preprint
核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。
KMT2C 和 KMT2D 是人类癌症中最常见的突变表观遗传基因。虽然 KMT2C 被确定为急性髓系白血病 (AML) 中的肿瘤抑制因子,但 KMT2D 在这种疾病中的作用仍不清楚,尽管它的缺失会促进 B 细胞淋巴瘤和各种实体癌。据报道,KMT2D 在 AML 中下调或突变,并且通过 shRNA 敲低或 CRISPR/Cas9 编辑导致其缺陷会加速小鼠的白血病形成。造血干细胞和祖细胞以及 Kmt2d 缺失的 AML 细胞的核糖体生物合成显著增强,并且核仁持续增大,rRNA 和蛋白质合成率增加。从机制上讲,发现 KMT2D 缺陷会导致小鼠和人类 AML 细胞中 mTOR 通路的激活。 Kmt2d 直接调节 Ddit4 的表达,Ddit4 是 mTOR 通路的负调节因子。与核糖体生物合成异常一致,研究表明,RNA 聚合酶 I 抑制剂 CX-5461 可显著抑制体内 Kmt2d 缺失的 AML 生长,并延长白血病小鼠的生存期。这些研究证实 KMT2D 是 AML 中事实上的肿瘤抑制因子,并揭示了对核糖体生物合成抑制前所未有的脆弱性。