摘要:尽管大豆蛋白质量很高,但由于 Kunitz (KTi) 和 Bowman-Birk 蛋白酶抑制剂 (BBis) 的存在,生大豆和豆粕不能直接添加到动物饲料混合物中,这会降低动物的生产率。热处理可以显著灭活胰蛋白酶和糜蛋白酶抑制剂 (BBis),但这种处理耗能大、成本高,并对种子蛋白的质量产生负面影响。作为一种替代方法,我们采用 CRISPR/Cas9 基因编辑来在 BBi 基因中产生突变,从而大幅降低大豆种子中的蛋白酶抑制剂含量。农杆菌介导的转化被用于产生几个稳定的转基因大豆事件。使用 Sanger 测序、蛋白质组学分析、胰蛋白酶/糜蛋白酶抑制剂活性测定和 qRT-PCR 将这些独立的 CRISPR/Cas9 事件与野生型植物进行了比较。总的来说,我们的结果表明,影响大豆主要 BBi 基因的一系列等位基因功能丧失突变的产生。两个高表达种子特异性 BBi 基因的突变导致胰蛋白酶和糜蛋白酶抑制剂活性大幅降低。
The U.S. Food and Drug Administration (FDA)–approved protease inhibitors (PIs) include atazanavir (ATV), atazanavir/cobicistat (ATV/c), darunavir (DRV), darunavir/cobicistat (DRV/c), fosamprenavir (FPV), indinavir (IDV), lopinavir/ritonavir (LPV/R),Nelfinavir(NFV),Ritonavir(RTV),Saquinavir(SQV)和Tipranavir(TPV)。使用Cobicistat(Cobi)或RTV(也称为PK升高)的药代动力学(PK)增强的基于PI的方案(PK)会增加浓度并延长PI的半衰期。这些方案表现出病毒学效力,艺术性人士的耐用性以及耐药性的高障碍。因为LPV/R,Fosamprenavir/Ritonavir(FPV/R),ATV(有或没有PK增强剂)和Saquinavir/Ritonavir(SQV/R)具有缺点,例如较大的药丸负担,较大的药丸负担,较低的疗效,毒性较低,毒性增加了两种毒性,或者毒性增加了两种成分的driprient,又是一定效率的drivition invirention n comprient invirention -n contriend comprient invers compriention compriention compriention compriention -n contriend comprient comprient invers-在某些临床情况下,建议(NRTIS)作为初始治疗(请参见HIV患者的初始组合抗逆转录病毒方案的表6B)。
从历史上看,对自然界中海量新生物活性化合物和天然代谢物的研究为药物研发带来了巨大的益处 [1]。人们从天然植物中分离出许多有趣的化学骨架,如黄酮类化合物、查尔酮、丹参酮、肉桂酰胺、二芳基庚烷类化合物、褐藻单宁(并非详尽列出),它们代表了多种生物活性药物的活性成分。应当强调的是,海洋来源的化合物数量多于陆地来源的化合物,包括抗病毒化合物 [2–5]。天然产物中发现的这些分子骨架的巨大多样性刺激了人们寻找对抗“严重急性呼吸道综合征冠状病毒 2”(SARS-CoV 2)的天然分子。一些天然植物化合物 [6] 更具体地针对 SARS-CoV 2 细胞受体,如血管紧张素转换酶 (ACE2) [7],而另一些化合物则针对特定的蛋白酶,如木瓜蛋白酶样蛋白酶或 SARS-CoV 2 糜蛋白酶样蛋白酶 [3CL(pro)] [8, 9]。新配体与这些特定 SARS-CoV 2 受体分子结构的相互作用使得能够鉴定出针对受感染细胞的新药物,这些药物在体外显示出有效的抗病毒活性 [10, 11]。
摘要:Flaviviridae家族的成员Zika病毒(Zikv)被认为是主要的健康威胁,导致新生儿的多个小头畸形和成人Guillain-Barré综合征。在这项研究中,我们针对了ZIKV NS2B-NS3蛋白酶的“超级开放”构象的瞬时,深层和疏水的口袋,以克服活性位点袋的局限性。在针对新型变构现场对大约700万种化合物进行虚拟对接筛选后,我们选择了前六名候选物,并在酶法测定中对其进行了评估。六名候选者抑制了低微摩尔浓度下的ZIKV NS2B-NS3蛋白酶蛋白酶蛋白水解活性。这六种化合物针对ZIKV中所选的蛋白酶袋,是独特的候选药物,并开放了新的机会,可以治疗几种毒病毒感染。
食品和药物管理 - 批准的指示ARALAST NP(Alpha1-蛋白酶抑制剂(人))是一种α1-蛋白酶抑制剂(人)(人)(Alpha1-PI),该抑制剂(Alpha1-PI)表示,由于严重的alpha1- pi-pi-pi-Pi的先天性缺乏,临床上具有临床上明确症状的成年人的慢性增强疗法。Aralast NP增加了抗原和功能(抗中性噬菌酶能力,ANEC)血清水平和抗原性肺上皮衬里α1-PI的水平。在肺部加剧的任何Alpha1-Pi(包括Aralast NP)中增强治疗的有效性以及在α1-抗抗胰蛋白酶缺乏症中肺气肿的进展尚未在随机,对照试验中得出结论。临床数据表明,Aralast NP患者的慢性增强和维持治疗的长期影响。aralast NP不被视为肺部疾病的治疗。Glassia(Alpha1-蛋白酶抑制剂(人))是α1-蛋白酶抑制剂(人)(α1-PI),用于临床明显的肺气肿的成年人长期增强和维持疗法,这是由于严重的遗传性遗传性缺乏alpha1-pi(alpha1-pi(alpha1-pi)(alpha1-pi-pi)。Glassia在血清和肺上皮衬里中增加了抗原和功能(抗中性磷酸弹性酶的能力,ANEC)水平。在包括Glassia在内的任何α -PI,包括玻璃体病毒的任何α -PI的增强疗法对α-在随机,对照临床试验中尚未得出结论性证明。临床数据表明,玻璃亚患者的慢性增强和维持治疗的长期影响。Glassia尚未表示尚未确定严重α -PI缺乏的患者的肺部疾病治疗。
近年来,对消费者对自然行动的渴望减少环境足迹的渴望,对基于植物的产品的需求出现了。植物蛋白酶在分解Pro Teins和在所有生物体中产生氨基酸的作用中起着至关重要的作用,在这个市场中已成为幼体蛋白酶在营养型领域中最常使用的植物蛋白酶。尽管这些酶广泛流行,但在市场上可用的商业蛋白水解产品的控制和分析中存在显着差距,尤其是关于它们的表征和定量。本评论文章通过检查来源,催化性能,生产过程和可分析它们的技术来解决这一关键点,从而为行业中提供了新的可能性。此外,我们将探讨其中一些酶的特征以及影响半胱氨酸蛋白酶制剂作为人消化辅助物的有效性的关键因素。最后,我们将讨论未来的观点,并建议采取行动,以继续进入植物性蛋白酶在食品补充剂和消化辅助工具中的工业应用。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
结构-功能关系:氨基酸 - 结构和功能团特性、蛋白质的肽和共价结构、初级和高级结构的阐明、Ramachandran 图、蛋白质结构的演变、蛋白质降解和控制蛋白质降解的分子途径介绍、核糖核酸酶 A、肌红蛋白、血红蛋白、糜蛋白酶等模型蛋白质的结构-功能关系;蛋白质纯化的基本原理;表征表达蛋白质的工具;蛋白质折叠:安芬森教条、列文塔尔悖论、蛋白质折叠的协同性、蛋白质折叠的自由能景观和蛋白质折叠途径、熔球状态、分子伴侣、与蛋白质折叠相关的疾病、分子动态模拟简介。