摘要 — 风电作为一种绿色能源,正在全球范围内迅速发展,同时,为缓解风电波动性而部署的储能系统 (ESS) 也应运而生。风电和储能系统的容量确定已成为一个亟待解决的重要问题。风电场的尾流效应会导致风速不足和下游风力涡轮机发电量下降,然而,这在电力系统的容量确定问题中很少被考虑。本文提出了一个双目标分布稳健优化 (DRO) 模型,用于确定考虑尾流效应的风电和储能系统的容量。建立了一个基于 Wasserstein 度量的模糊集来表征风电和需求的不确定性。具体而言,风电不确定性受第一阶段确定的风电容量的影响。因此,所提出的模型是一个具有内生不确定性(或决策相关不确定性)的 DRO 问题。为了求解所提出的模型,开发了一种基于最小 Lips-chitz 常数的随机规划近似方法,将 DRO 模型转化为线性规划。然后建立了迭代算法,并嵌入了求取最小Lipschitz常数的方法。案例研究证明了考虑尾流效应的必要性和所提方法的有效性。
产能市场的目的是通过补偿资源来提高电网的可靠性,以便在需要时提供电力,从而确保总体资源充足性。同样,资源充足性要求旨在通过需要在需要时提供资源来确保可靠性。但是,并不总是很清楚,如何衡量供应资源对整体系统容量和可靠性的贡献(Madaeni,Sioshansi和Denholm 2012,2)。并非系统中的所有容量都同等地贡献可靠性。总体系统容量,因此可靠性不仅取决于供应资源在运行时可以对系统贡献的功率量,还取决于其他因素,例如在系统稀缺时,资源可能会在运行时运行。理想的容量市场或资源充足性要求将准确地说明这些因素计算资源的能力。随着产能市场的可用收入的增长,诸如风能和太阳能等可变发电的可用收入增加,人们对具有潜在不安全燃料来源的天然气工厂的可用性引起了人们的担忧。
该站点包括一个 500KW 锂离子系统,用于测试如何部署电池储能系统 (BESS) 来管理配电系统容量状况。它还可以减少配电系统基础设施的峰值负载状况,并提供太阳能平滑功能来解决与可再生能源发电相关的间歇性问题。
𝑪𝑪 临界点矩阵 𝑛𝑛 !具有 𝑖𝑖 级需求的公司数量 𝐶𝐶 “# 太阳能光伏系统容量(MW) 𝜂𝜂 $ 存储充电效率 𝐶𝐶 “#%&' 最大太阳能光伏系统容量(MW) 𝜂𝜂 (存储放电效率 𝐶𝐶 )存储系统容量(MWh) 𝑛𝑛 “# 太阳能光伏系统寿命(年) 𝐷𝐷 电力需求(MW) 𝑛𝑛 * 存储系统寿命(年) 𝐷𝐷 ! 𝑖𝑖 级电力需求(MW) 𝑁𝑁 公司总数 𝐷𝐷𝐷𝐷𝐷𝐷 放电深度(%) 𝑂𝑂 “# 太阳能光伏系统 O&M 成本(EUR/MW/年) 𝐸𝐸 存储系统规模 (MWh) 𝑂𝑂 * 存储系统 O&M 成本 (EUR/MWh/年) 𝑓𝑓 !类别 𝑖𝑖 校正系数 𝑃𝑃 + 电力批发价 (EUR/MWh) 𝐹𝐹 太阳能发电容量系数 (MW/MW) 𝑟𝑟 折扣率 (%) 𝐺𝐺 太阳能发电量 (MW) 𝑆𝑆 存储水平 (MWh) 𝐼𝐼 "# 太阳能光伏系统安装成本 (EUR/MW) 𝑆𝑆 ,-&. 实际存储水平 (MWh) 𝐼𝐼 * 存储系统安装成本 (EUR/MWh) 𝑆𝑆 )/)0&!1 可持续起始存储水平 (MWh) 𝑳𝑳 下三角矩阵 𝑡𝑡 时间 (小时) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 平准化电力成本(EUR/MWh) 𝛥𝛥𝛥𝛥𝛥 时间步长(小时)𝑴𝑴 差异矩阵𝑡𝑡 1 在第 n 个临界存储级别(小时)𝑚𝑚 ! 𝑖𝑖 级电表数量𝑇𝑇 时间范围(小时)𝑀𝑀 电表总数
6.3 可互换解决方案 ................................................................................................ 6-6 6.4 PNT 与通信的协同作用 ................................................................................ 6-6 6.5 合作组织结构 ................................................................................................ 6-7 6.6 展望未来 ........................................................................................................ 6-8 附录 A. 系统参数和说明 ............................................................................................. A-1 A.1 系统参数 ............................................................................................................. A-1 A.1.1 信号特性 ............................................................................................. A-1 A.1.2 精度 ............................................................................................................. A-1 A.1.3 可用性 ............................................................................................. A-3 A.1.4 覆盖范围 ............................................................................................. A-3 A.1.5 可靠性 ............................................................................................. A-3 A.1.6 定位速率 ............................................................................................. A-3 A.1.7 定位尺寸 ............................................................................................. A-3 A.1.8 系统容量 .............................................................................................
6.3 可互换解决方案 ................................................................................................ 6-6 6.4 PNT 与通信的协同作用 ................................................................................ 6-6 6.5 合作组织结构 ................................................................................................ 6-7 6.6 展望未来 ........................................................................................................ 6-8 附录 A. 系统参数和说明 ............................................................................................. A-1 A.1 系统参数 ............................................................................................................. A-1 A.1.1 信号特性 ............................................................................................. A-1 A.1.2 精度 ............................................................................................................. A-1 A.1.3 可用性 ............................................................................................. A-3 A.1.4 覆盖范围 ............................................................................................. A-3 A.1.5 可靠性 ............................................................................................. A-3 A.1.6 定位速率 ............................................................................................. A-3 A.1.7 定位尺寸 ............................................................................................. A-3 A.1.8 系统容量 .............................................................................................
• 浴缸(或抽水蓄能设施中的水库)的大小,以及它能储存多少水或能量,决定了 kWh(能量存储容量) • 电力转换系统的工作原理就像浴缸中的水龙头/排水管。它决定了浴缸排水和重新注水的速度,因此决定了 kW(功率)指标 • 浴缸作为一种资源的成本可以用 $/kW-month(系统容量成本)来描述 • 持续时间是特定存储系统(小时)价值的最重要驱动因素之一
集成 RF 管理功能 集成 RF 管理功能解决了部署商业无线网络的运营挑战。这些功能包括无线电资源管理、MIMO、卓越的 DFS 支持、SDR 认证以及频谱智能集成到 WCS。集成 RF 管理功能可提高系统容量、提高系统性能、执行自动自我修复以补偿 RF 盲区和接入点故障,并提供一种全面的方式来管理您最宝贵的资产之一——企业频谱。
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。