基于闪烁体的伽马射线检测器中时间响应的增强对于诸如飞行时间正电子发射断层扫描(TOF-PET)以及实验核和粒子物理等应用至关重要。实现这一改进的一种有希望的方法是利用Cherenkov辐射,与传统闪烁光相比,它几乎瞬间发出。然而,基于Cherenkov的检测的主要局限性是可检测光子的低收率,因为大多数紫外线(UV)范围内发出,许多材料表现出很高的吸收和透明度降低。为了克服这一限制,我们建议使用红移的Cherenkov散热器(RCR)。通过将荧光掺杂剂引入液体溶剂中,Cherenkov光子从紫外线转移到可见的光谱,在紫外线上,材料更透明,常规的光电探测器具有更高的效率。这种技术旨在增加检测到的Cherenkov光子的数量,最终导致辐射探测器的时机分辨率得到改善。为了评估这种方法的可行性,我们测试了不同的液体溶剂,包括八度(ODE),氯仿(CHCL₃)和二甲基亚氧化二甲基亚氧化物(DMSO),并以Popop为波长转移掺杂剂。uv-ab-吸附分析证实,ODE在紫外线范围内表现出最高的透明度,并且在检测到的Cherenkov光子中,Popop的掺入导致了17%至56%的增加,如图1左图所示,这比较了与波长偏移的不同溶剂的相对检测率。
摘要 随着星系弱透镜的统计能力达到百分比级精度,需要大规模、逼真且稳健的模拟来校准观测系统,特别是考虑到随着勘测深度的增加,物体混合的重要性日益增加。为了捕捉剪切和光度红移校准中混合的耦合效应,我们定义了透镜的有效红移分布 nγ(z),并描述了如何使用图像模拟来估算它。我们使用一套广泛的定制图像模拟来表征应用于暗能量调查 (DES) 第 3 年数据集的剪切估计管道的性能。我们描述了多波段、多时期的模拟,并通过与真实 DES 数据的比较证明了它们的高水平的真实感。我们通过在我们的表面模拟上运行变体来分离产生剪切校准偏差的效应,并发现与混合相关的效应是平均乘法偏差的主要贡献,约为 -2%。通过生成随红移变化的输入剪切信号模拟,我们校准了有效红移分布估计中的偏差,并证明了这种方法在混合存在时的重要性。我们提供经过校正的有效红移分布,其中包含统计和系统不确定性,可用于 DES 第三年弱透镜分析。
1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国
这项工作旨在评估用于银河红移估计问题的光度法(高度理想化)数据集中的某些经典回归模型的性能。线性回归模型,多项式回归,决策树,随机森林和支持向量机经过训练和验证,最初是在训练样本中,与原始基本数据的5%相对应。接下来,在测试样本中评估了这些相同的模型,对应于其余95%的基数,从而允许调整后的模型概括的概括。此外,由于变量之间的高度相关性,主要组件分析技术(PCA)也用于降低系统维度。关键字:星系,光度法,回归,宇宙学,机器学习
圣保罗大学,天文学研究所,地球物理学与大气科学,Matão街1226,邮政编码05508-090,圣保罗,巴西B巴西Brazilian物理学研究中心,Xavier Sigaud Street 150博士,ZIP Code 22290-180,Rio Deee for deeec,deeca,daine for daine for deee for dae janeir,daane, Covas Highway,Lot J2,Block J Itaguai工业区,邮政编码23810-000,Itaguai,RJ,巴西D研究所,圣保罗大学,Matão街1371年,邮政编码05508-090 IP Code 91501-970,Porto Alegre,RS,Brazil f地址拉塞雷纳大学研究与发展中心,Avenida Juan Cisternas 1200,拉塞雷纳,智利 g SIGMA 空间科学与技术公司,CL-1700000,拉塞雷纳,智利 h 波兰科学院尼古拉·哥白尼天文中心,ul。 Bartycka 18, 00-716,华沙,波兰 i 帕拉伊巴河谷大学,Shishima Hifumi Ave. 2911,邮编 12244-000,圣若泽杜斯坎普斯,SP,巴西 j 马林加州立大学,计算机科学研究生课程,Colombo Ave. 5790,邮编 87020-900,马林加,PR,巴西 k 马林加州立大学,生产工程研究生课程,Colombo Ave. 5790,邮编 87020-900,马林加,PR,巴西 l 巴拉那联邦大学,Jandaia do Sul 校区,Doutor João Maximiano Street 426,邮编 86900-900,Jandaia do Sul,PR,巴西 m 雅典国家天文台天文、天体物理、空间应用和遥感研究所,GR 15236 Penteli,希腊n 安达卢西亚天体物理研究所 - CSIC,Glorieta de la Astronomía s/n,E-18008 格拉纳达,西班牙 o 圣卡塔琳娜联邦大学物理系,CEP 88040-900,弗洛里亚诺波利斯,SC,巴西 p NOAO。 950 North Cherry Ave. Tucson, AZ 85719,美国 q GMTO Corporation,465 N. Halstead Street, Suite 250,Pasadena, CA 91107,美国