©2022此手稿版本可在CC-BY-NC-ND 4.0许可下提供https:// creativecommons.org/licenses/by-nc-nc-nd/4.0/
摘要:通过从宽频率范围内捕获光谱数据以及空间信息,高光谱成像 (HSI) 可以检测到温度、湿度和化学成分方面的细微差异。因此,HSI 已成功应用于各种应用,包括用于安全和防御的遥感、用于植被和农作物监测的精准农业、食品/饮料和药品质量控制。然而,对于碳纤维增强聚合物 (CFRP) 的状态监测和损伤检测,HSI 的使用是一个相对未触及的领域,因为现有的无损检测 (NDT) 技术主要侧重于提供有关结构物理完整性的信息,而不是材料成分。为此,HSI 可以提供一种独特的方法来应对这一挑战。本文以欧盟 H2020 FibreEUse 项目为背景,介绍了使用近红外 HSI 相机将 HSI 用于 CFRP 产品无损检测的应用。详细介绍了三个案例研究中的技术挑战和解决方案,包括粘合剂残留物检测、表面损伤检测和基于 Cobot 的自动化检测。实验结果充分证明了HSI及相关视觉技术在CFRP无损检测方面的巨大潜力,特别是满足工业制造环境的潜力。
Jeff Gostick 是滑铁卢大学化学工程系副教授,负责多孔材料工程与分析实验室。他的研究主要围绕理解氢燃料电池、氧化还原流系统、锌空气电池、锂离子电池和超级电容器中使用的多孔电极的结构-性能关系。他的团队使用组合实验表征、新颖的生产方法和先进的定制计算工具。他是开源孔隙网络建模项目 OpenPNM (openpnm.org) 以及多孔介质图像分析工具 PoreSpy (porespy.org) 的首席开发人员。Gostick 教授是一名持证专业工程师,已发表 70 多篇期刊文章,最近被加拿大化学工程学会评为新兴领袖。
纤维是纺织研究所 [1] 定义的一种材料,是指具有柔韧性、细度和高长度与厚度之比的物质单位。在不同领域,纤维具有非常广泛的含义,例如用于食品补充剂的纤维以及植物或人体内的纤维。纤维通常是指制造纺织纱线和织物的基本单元。但纺织纤维应具有一些特定的属性。例如,棉花植物含有足够强韧和柔软的纤维,可以纺成纱线,然后通过纺织加工织造或编织成织物,但人类的头发不属于纺织纤维,因为它无法满足上述属性。所以,我们可以说所有纺织品都是由纤维制成的,但并非所有纤维都可用于制造纺织品。将纤维捻成纱线的重要要求包括长度至少 5 毫米、粘结性、柔韧性和足够的强度,其他重要特性包括弹性、细度、均匀性、光泽和耐用性。还需要记住的是,并非所有纺织纤维都是一样的 [2]。每种纤维都具有不同的特性,因此会产生不同的纺织品。有些纤维的保温性比其他纤维更好,有些纤维的染色性很好,有些纤维更耐用,而有些纤维更舒适 [3]。纤维材料的来源可能是有机、无机或金属。它们是通过将组成原子连接成分子而形成的细小结构。纤维材料可分为两大类:天然纤维和化学或人造纤维。天然纤维的生长缓慢,在结构上受遗传控制,而人造纤维的生产速度很快。天然纤维包括植物纤维(如棉、亚麻、苎麻、黄麻和大麻)、动物纤维(如蚕丝、羊毛和毛发纤维)和矿物纤维(如石棉)。合成纤维包括再生纤维(如粘胶纤维和醋酸纤维)、合成纤维(如聚酯、聚酰胺、聚烯烃)和无机纤维(如具有完全无定形或微晶结构的玻璃纤维和碳纤维)[4]。另一类是高性能纤维,即经过加工制成的纤维,其拉伸性能和其他机械性能均有所提高。
这是纤维材料国际会议首次在中国大陆召开,对纤维材料界来说具有特殊的意义。本次会议云集了来自世界20多个国家和地区的新老朋友。这表明中国作为世界纺织生产大国,正更加重视学术研究,与世界各国一道,共创纤维材料产业的辉煌未来。纤维材料国际会议的宗旨是为专家和专业人士提供一个交流最新进展信息、碰撞智慧火花的舞台。从这个意义上说,会议每一次都为纤维材料领域做出了巨大的贡献。本次大会共有来自20多个国家和地区的400余篇学术论文参会,为参会者提供了该行业的最新发展和当前挑战。作为本次大会的主办方,整理参会者报告的丰富内容是我们义不容辞的责任。因此,我们精心编撰了2009年国际纤维材料大会论文集,希望它们能够与世界美好的未来共存。在此,我们向参加本次大会的所有演讲者和论文作者表示衷心的感谢,向所有为本次大会的成功召开而不懈努力的人员致以诚挚的敬意。