以开放式、基于项目的学习为重点的本科课程教学生如何定义具体目标,将对算法的概念理解转化为代码,并评估/分析/展示他们的解决方案。然而,人工智能和机器学习在方法和应用方面都变得越来越多样化,这使得设计涵盖足够广泛的人工智能领域的项目课程具有挑战性。出于这些原因,现有的人工智能项目课程仅限于一组狭窄的方法(例如仅强化学习)或应用程序(例如仅计算机视觉)。在本文中,我们建议使用 Minecraft 作为通过基于项目的学习教授人工智能的平台。Minecraft 是一款开放世界沙盒游戏,包含探索、资源收集、制作、建造和战斗等元素,由 Malmo 库支持,该库为玩家在不同粒度级别的观察和操作提供了编程接口。在 Minecraft 中,学生可以设计项目,使用基于搜索的 AI、强化学习、监督学习和约束满足等方法处理文本、音频、图像和表格数据等数据类型。我们描述了使用 Minecraft 的开放式本科 AI 项目课程的经验,其中包括 82 个不同的项目,涵盖从导航、指令跟踪、对象检测、战斗到音乐/图像生成等主题。
第一单元:人工智能问题:人工智能技术 – 成功标准 – 将问题定义为状态空间搜索 – 生产系统 – 特征 – 问题特征。第二单元:启发式搜索技术:生成和测试 – 爬山法 – 最佳优先搜索 – 问题简化 – 约束满足 – 手段最终分析。第三单元:知识表示问题:知识表示方法 – 框架问题 – 可计算函数和谓词 – 解析 – 程序性知识与陈述性知识。第四单元:机器人基础:机器人简介、分类、机器人历史、机器人的优缺点、机器人组件、机器人自由度、机器人关节和坐标、机器人工作空间、机器人范围、机器人语言。UNIT-V -:传感器:介绍机器人的内部和外部传感器、位置传感器、速度传感器、加速度传感器、声纳和红外传感器、触摸和触觉传感器。机器人的应用:机器人的应用、机器人的选择、机器人应用的经济因素和理由;安全要求。教科书 1.Elaine Rich 和 Kevin Knight,《人工智能》,Tata McGraw Hill,第二版。2.Craig J J,“机器人学、力学和控制导论”,Pearson Education,新德里,2004 年。参考书 1.Saeed B Niku,“机器人学导论”,Pearson Education,新德里,2003 年。2.George F Luger,“人工智能”,Pearson Edition 出版物,第 4 版
提供对各种机器学习算法的理解以及评估 ML 算法性能的方法 UNIT - I:简介:人工智能问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和非监督学习,强化学习 – 学习理论 – 学习的可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类第五单元:无监督学习最近邻模型 – K 均值 – 围绕中心点聚类 – 轮廓 – 层次聚类 – kd 树、聚类树 – 学习有序规则列表 – 学习无序规则。强化学习 – 示例:迷路 – 状态和动作空间
1. 解决基于人工智能的基本问题。2. 定义人工智能的概念。3. 将人工智能技术应用于实际问题以开发智能系统。4. 在实施智能系统时,从一系列技术中进行适当选择。第一单元简介:人工智能问题概述,人工智能问题为 NP、NP 完全和 NP 难题。强与弱、整洁与邋遢、符号与亚符号、基于知识和数据驱动的人工智能。第二单元搜索策略:问题空间(状态、目标和运算符)、通过搜索解决问题、启发式和知情搜索、最小-最大搜索、Alpha-beta 剪枝。约束满足(回溯和局部搜索方法)。第三单元知识表示和推理:命题和谓词逻辑、解析和定理证明、时间和空间推理。概率推理、贝叶斯定理。全序和偏序规划。目标堆栈规划、非线性规划、分层规划。单元 IV 学习:从示例中学习、通过建议学习、基于解释的学习、解决问题中的学习、分类、归纳学习、朴素贝叶斯分类器、决策树。自然语言处理:语言模型、n-gram、向量空间模型、词袋、文本分类。信息检索。单元 V 代理:代理的定义、代理架构(例如,反应式、分层式、认知式)、多代理系统 - 协作代理、竞争代理、群体系统和生物启发模型。智能系统:表示和使用领域知识、专家系统外壳、解释、知识获取。关键应用领域:专家系统、决策支持系统、语音和视觉、自然语言处理、信息检索、语义网。教科书:
解决基于人工智能的基本问题。 定义人工智能的概念。 将人工智能技术应用于实际问题以开发智能系统。 在实施智能系统时,从一系列技术中进行适当选择。 第一单元简介:人工智能问题概述,人工智能问题为 NP、NP 完全和 NP 难题。强与弱、整洁与邋遢、符号与亚符号、基于知识和数据驱动的人工智能。 第二单元搜索策略:问题空间(状态、目标和运算符)、通过搜索解决问题、启发式和知情搜索、极小最大搜索、Alpha-beta 剪枝。约束满足(回溯和局部搜索方法)。 第三单元知识表示和推理:命题和谓词逻辑、解析和定理证明、时间和空间推理。概率推理、贝叶斯定理。全序和偏序规划。目标堆栈规划、非线性规划、分层规划。单元 IV 学习:从示例中学习、通过建议学习、基于解释的学习、解决问题中的学习、分类、归纳学习、朴素贝叶斯分类器、决策树。自然语言处理:语言模型、n-gram、向量空间模型、词袋、文本分类。信息检索。单元 V 代理:代理的定义、代理架构(例如,反应式、分层式、认知式)、多代理系统 - 协作代理、竞争代理、群体系统和生物启发模型。智能系统:表示和使用领域知识、专家系统外壳、解释、知识获取。关键应用领域:专家系统、决策支持系统、语音和视觉、自然语言处理、信息检索、语义网。
深入了解数据结构和数据操作。了解监督和无监督学习模型,包括线性回归、逻辑回归、聚类、降维、K-NN 和管道。使用 SciPy 包及其子包(包括 Integrate、Optimize、Statistics、IO 和 Weave)执行科学和技术计算。使用 NumPy 和 Scikit-Learn 获得数学计算方面的专业知识。掌握推荐引擎和时间序列建模的概念。理解机器学习的原理、算法和应用。了解人工智能在不同领域的各种用例中的应用,如客户服务、金融服务、医疗保健等。实现经典的人工智能技术,如搜索算法、神经网络和跟踪。学习如何应用人工智能技术解决问题,并解释当前人工智能技术的局限性。设计和构建自己的智能代理,并应用它们创建实际的人工智能项目,包括游戏、机器学习模型、逻辑约束满足问题、基于知识的系统、概率模型、代理决策功能等。了解 TensorFlow 的概念、主要功能、操作和执行管道。掌握卷积神经网络、循环神经网络、训练深度网络和高级接口等高级主题。使用 Tableau 分析数据并熟练构建交互式仪表板 了解 Hadoop 生态系统的不同组件,并学习使用 HBase、其架构和数据存储,了解 HBase 和 RDBMS 之间的区别,并使用 Hive 和 Impala 进行分区。了解 MapReduce 及其特性,并学习如何使用 Sqoop 和 Flume 提取数据。使用最流行的库 Python 的自然语言工具包 (NLTK) 了解自然语言处理的基础知识。
大脑中的表征被编码为大量神经元的活动模式。群体编码表征科学,也称为并行分布式处理 (PDP),实现了神经学的逼真性,并能够解释正常人中的大量认知现象,包括反应时间(和阅读延迟)、刺激识别、刺激显着性对注意力的影响、知觉不变性、同时以自我为中心和以他为中心视觉处理、自上而下/自下而上的处理、语言错误、经验、频率和习得年龄的统计规律的影响、规则和符号的实例化、内容可寻址内存和模式完成能力、在面对嘈杂或扭曲的输入时保持功能、推理、并行约束满足、绑定问题和伽马相干性、海马功能原理、知识在大脑中的位置、通过经验获得的知识范围和深度的局限性以及皮亚杰认知发展阶段。 PDP 研究已经能够为大量语言中因中风或痴呆导致的各种语言功能障碍以及此类研究中观察到的优雅退化现象提供连贯的解释。它们还为我们理解注意力(包括半侧空间忽视)、情绪功能、执行功能、运动计划、视觉处理、决策和神经经济学做出了重要贡献。神经网络群体动态与脑电图节律的关系开始显现。尽管如此,PDP 方法几乎没有渗透到认知研究的主要领域,包括神经心理学和认知神经心理学,以及认知心理学的大部分领域。本文试图概述 PDP 原理和应用,以面向更广泛的受众。
将位上的函数映射到作用于量子位上的汉密尔顿量在量子计算中有许多应用。特别是,表示布尔函数的汉密尔顿量对于将量子退火或量子近似优化算法应用于组合优化问题是必不可少的。我们展示了这些函数如何自然地用汉密尔顿量来表示,这些汉密尔顿量是泡利 Z 算子(伊辛自旋算子)的和,和的项对应于函数的傅里叶展开。对于许多由紧凑描述给出的布尔函数类,例如给出可满足性问题实例的合取范式布尔公式,计算其汉密尔顿量表示是 #P 难,即与计算其满足分配的数量一样难。另一方面,构造表示实函数的汉密尔顿量(例如每个作用于固定数量的位的局部布尔子句之和)通常不存在这种困难,这在约束满足问题中很常见。我们展示了组合规则,通过将表示更简单子句的汉密尔顿算子组合为构建块,明确构造表示各种布尔函数和实函数的汉密尔顿算子,这些规则特别适合直接实现为经典软件。我们进一步将结果应用于受控酉算子的构造,以及在辅助量子比特寄存器中计算函数值的算子的特殊情况。最后,我们概述了我们的结果在量子优化算法中的几个其他应用和扩展。这项工作的目标是提供一个量子优化设计工具包,专家和从业者都可以使用它来构建和分析新的量子算法,同时为文献中出现的各种构造提供一个统一的框架。
填字游戏 (CP) 解析是一种流行的游戏。与几乎所有其他人类游戏一样,可以自动解决这个问题。CP 求解器将其纳入约束满足任务,其目标是最大限度地提高用与线索一致并与谜题方案连贯的答案填充网格的概率。这些系统(Littman 等人,2002 年;Ernandes 等人,2005 年;Ginsberg,2011 年)严重依赖于每个线索的候选答案列表。候选答案的质量对 CP 解析至关重要。如果正确答案不在候选列表中,则无法正确解答填字游戏。此外,即使是排名较差的正确答案也会导致填字游戏填写失败。答案列表可以来自多个求解器,其中每个求解器通常专门解决不同类型的线索,和/或利用不同的信息来源。此类列表主要通过两种技术检索:(1)使用线索表示通过搜索引擎查询网络;(2)查询包含先前回答过的线索的线索-答案数据库。在本文中,我们专注于后者。在从线索-答案知识源中检索候选答案的问题中,答案根据查询线索与数据库中的线索之间的相似性进行排序。相似性由搜索引擎提供,搜索引擎为每个检索到的答案分配一个分数。已经实施了几种方法,通过学习排序策略对候选列表进行重新排序(Barlacchi 等人,2014a;Barlacchi 等人,2014b;Nicosia 等人,2015;Nicosia 和 Moschitti,2016;Severyn 等人,2015)。这些方法需要一个训练阶段来学习如何排序,并且大多数情况下在重新排序方面有所不同。
纯量子力学特性(例如相干性和纠缠)可以解决困难的计算任务,与经典计算相比,其性能呈指数级提升 [8]。这两个领域取得的巨大成功正推动量子机器学习研究的快速发展,探索机器学习和量子计算之间的相互作用,以了解这两个领域是否可以互利互惠。最简单的人工神经元模型可以追溯到经典的Rosenblatt感知器[9],它可以看作是最简单的二元分类学习算法。可以考虑通过量子架构实现感知器的多种可能性[10-16]。在这种情况下,研究特定量子感知器模型相对于其经典对应物实现量子优势的能力非常重要。单个经典感知器的主要限制在于,分类任务是通过在包含定义模式的 N 个特征的向量空间中的超平面将属于不同类别的模式分离来完成的。特别地,人们很快指出,简单的感知器无法计算 XOR 函数 [17],因为这对应于一个分类问题,其中不同的类别不能用平面上的一条线分开。然而,人们发现,当考虑大量特征时,即对于具有大维度 N 的向量空间中的模式,给定 p 个随机标记模式,如果 p < 2 N 且 N 很大,则感知器无法对它们进行分类的可能性极小[18,19]。相反,当 N 很大时,当 p > 2 N 时,简单感知器能够对 p 个随机标记模式进行分类的概率变得非常小。显然,表征感知器性能的重要参数是比率 α = p / N ,并由此确定该比率的临界值作为经典感知器的模式容量,即 α c = 2。在开创性的工作 [ 20 ] 中,Gardner 采用统计物理工具特别是无序系统理论的方法,对神经网络的模式容量提出了一种新方法。找到分离随机标记模式的超平面的可能性实际上属于随机约束满足问题类 [ 16 , 21 , 22 ],可以使用自旋玻璃的统计理论进行研究。在这个方法中,参数 α 在高维情况下引起相变,模式容量由分离 SAT 相的临界值 α c 决定,对于 α < α c ,可以满足所有约束,即将所有模式从 UNSAT 相中分类,α > α c ,其中未满足约束的最小数量大于零。在这里,我们将遵循 Gardner 的统计方法,推导 [14] 中引入的基于连续变量多模式量子系统的特定量子感知器模型的模式容量。我们表明,该模型与经典模型相比没有任何量子优势,因为其容量始终小于其经典极限。本文结构如下。在第 2 节中,我们介绍了经典感知器及其模式容量的定义。在第 3 节中,我们描述了正在研究的量子感知器模型,并展示了由此产生的模式容量。在第 5 节中,我们详细解释了所采用的技术,这些技术基于 Gardner 用来确定经典感知器的模式容量的相同统计方法。最后,在第 4 节中,我们讨论了本文获得的结果,并将它们与同样通过统计方法获得的模式容量进行了比较,但针对的是不同的量子感知器模型。