A 类死亡人数/死亡率 财年比较:1/0.29 0/0.00 23 财年死亡人数/死亡率:0/0.00 10 年平均值 (2014 财年-2023 财年) 死亡人数/死亡率:2.20/0.64
输入-处理-输出 计算机是一台机器。它也按照 IPO 循环工作。计算机接受数据、处理数据并给出有意义的结果。数据的输入、处理和输出过程称为 IPO(输入 - 处理 - 输出)循环。 计算机系统 计算机系统被定义为用于从数据生成信息的机器。数据是原始事实和数字。信息是有意义的数据。 计算机系统由不同的部分组成,它们共同使其工作。这些部分是:硬件和软件。 你在电脑上玩游戏。游戏是软件的一个例子,鼠标、键盘、显示器和操纵杆等是硬件的例子。你在画图程序中使用鼠标绘制图片。画图程序是软件的一个例子,鼠标是硬件的一个例子。你可以触摸或感觉到硬件部件,但不能触摸软件
目的:与癫痫相关的超同步神经元活性导致广泛的功能网络破坏延伸到癫痫发作区域之外。这种变化的功能网络拓扑被认为是从中出现非疾病症状的调解人,例如认知障碍。本研究的目的是证明具有良好癫痫发作和高质量生活的局灶性癫痫患者的功能网络改变。方法:我们比较了22个局灶性癫痫患者和16个健康对照,这些对照对源的源静脉内脑电图的功能连通性(相锁定值)得出。图指标是在五个频带中的预定义网络密度范围内计算的。结果:就全球网络拓扑改变而言,我们观察到相对于健康对照组,癫痫患者的小世界指数显着增加。在地方一级,两个左半球区域显示向更大的alpha带“集线器”转变。结论:焦点癫痫中明显的广泛的功能网络改变,即使以成功的抗塞氏菌药物疗法和高质量的生活质量为特征的队列。这些发现表明癫痫中功能网络分析的临床相关性。显着性:局灶性癫痫伴随着全球和局部功能网络劣质,这可能暗示在非塞兹症状的维持中。关键字:焦点癫痫;网络分析;功能连通性;来源级脑电图;图理论亮点:
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
很长一段时间以来,土著社会被排除在数学史领域(D'Ambrosio,1985,2001)。直到几十年前,科学的历史学家和哲学家确实抛弃了他们的研究领域,经常赋予口头传统的小规模和/或土著社会。The prevalence of the evolutionist (Tylor, 1871) and “prelogical thought” (Lévy-Bruhl, 1910) theories, arguing that these peoples had a lesser ability to abstract and generalize than ours, appears to have durably impeded the recognition of genuine mathematical practices carried out in the various indigenous societies worldwide (Vandendriessche,即将到来的2021)。在20世纪下半叶初,在这个问题上发生了重大的认识论变化,这是通过人类学家克劳德·莱维·斯特劳斯(ClaudeLévi-Strauss)的工作促进的。后者的认识论破裂似乎促使研究(在1970年代)的发展现在通常被认为是建立民族心理学的开创性作品(Vandendriessche&Petit,2017年)。这个新生的跨学科研究领域的当前发展有助于进一步扩大我们对数学知识及其历史的看法,同时在图片中包括所有在社会群体/社会中表现出的数学特征的所有活动,通常不被认为是这样的。在地球的各个土著社会中,数学并不是通常作为自治知识类别。(Rivers&Haddon 1902,Deacon&Wedgwood,1934年,Austern 1939,Lévi-Strauss 1947,Pinxten等人。然而,正如许多关于“传统”社会的民族志都表明,在整个20世纪,在其各种实践中(例如日历或装饰品的制作,营地和住宅的建立,纺织品生产,导航,接航,游戏,游戏,游戏,游戏,1983,Gladwin 1986,Mackenzie 1991,Desrosiers,2012,Galliot 2015…)。因此,eTnomecatians的一个主要认识论问题是确定其中一些实践与数学活动以及如何相关的程度。为了避免受到“数学一词的西方涵义”的约束,玛西娅·阿什尔(Marcia Ascher,1935-2013)是1990年代民族心理学的创始人之一,引入了“数学思想”的概念。数学思想被定义为涉及“数字,逻辑和空间配置,尤其是这些思想在系统或结构中的布置”的想法(Ascher,1991:3)。Ascher基于使用建模工具的使用开发了一种方法,旨在揭示与
摘要 目的。本研究的目的是通过机器学习方法识别受试者之间共享的相位耦合模式,该方法利用来自工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据。事实上,神经振荡的相位耦合被认为是远距离大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)时至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定频带上,并且已经认识到需要数据驱动的方法。机器学习技术已成为分析神经成像数据的宝贵工具,因为它们可以捕捉多元信号分布中的细粒度差异。在这里,我们期望这些应用于 MEG 相位耦合的技术可以揭示个体之间共享的 WM 相关过程。方法。我们分析了作为人类连接组项目的一部分收集的 WM 数据。当受试者 (n = 83) 在两种不同条件下执行 N -back WM 任务时收集 MEG 数据,即 2-back(WM 条件)和 0-back(控制条件)。我们估计了这两种条件以及 theta、alpha、beta 和 gamma 波段的相位耦合模式(多元相位斜率指数)。然后使用获得的相位耦合数据训练线性支持向量机,以便使用跨受试者交叉验证方法对受试者正在执行的任务条件进行分类。分类是根据来自各个频带的数据和所有频带的组合(多频带)分别进行的。最后,我们通过特征选择概率评估了不同特征(相位耦合)对分类的相对重要性。主要结果。分别根据 theta(62% 准确率)和 alpha 波段(60% 准确率)中的相位耦合模式成功地对 WM 条件和控制条件进行了分类。重要的是,多波段分类表明,不仅在 theta 和 alpha 波段,而且在 gamma 波段中的相位耦合模式也与 WM 处理有关,分类性能的提高 (71%) 证明了这一点。意义。我们的研究使用 MEG 源空间功能连接成功解码了 WM 任务。我们的方法结合了跨主题分类和我们小组最近开发的多维指标,能够检测到个体之间共享的连接模式。换句话说,结果可以推广到新的个体,并允许对与任务相关的相位耦合模式进行有意义的解释。
