语音晶体(PNC)表现出通常在天然材料中发现的声学特性,这导致了新的设备设计以进行声波复杂的操作。在本文中,我们报告了通过语音晶体中的线缺陷来构建微米尺度的语音波导,以实现片上紧密限制的引导,表面声波的弯曲,弯曲和分裂(锯)。PNC由定期镍支柱的平方晶格制成。它表现出一个完整的带隙,该带隙禁止在PNC内部锯的传播,但允许线缺陷内的传播。通过基于电镀的微生物制作过程,在128°Y型niobate底物上实现了波导。PNC晶格常数,支柱直径和支柱高度分别为10 𝜇𝑚,7.5 𝜇𝑚和3.2 𝜇𝑚。互插的换能器是单层整合在同一底物上的,用于195 MHz左右的SAW激发。通过使用扫描光学杂作干涉仪测量平面外表面位移场,可以通过测量平面外表面位移场来实验观察到语音波导中表面波的引导,弯曲和分裂。高频紧密限制的语音波 - 证明了精确的局部操作锯的可行性,这对于新兴的边境应用(例如基于声子的量子信息处理)至关重要。
集成量子光子学中的方向性已成为在单光子水平上实现具有非线性的可伸缩量子技术的有前途的途径。拓扑光子波导已被提出是一种在芯片上利用这种定向光 - 物质相互作用的新方法。然而,与常规线缺陷波导相比,嵌入式量子发射器与拓扑波导的定向耦合的强度仍然存在。在这项工作中,我们使用实验,理论和数值分析的组合对一系列波导中的方向耦合进行了研究。我们定量地表征了光照耦合在几个拓扑光子波导上的位置依赖性,并基准了其定向耦合性能与常规线缺陷波导。我们得出的结论是,与传统的线缺陷波导相比,拓扑波导的表现不佳,将其定向光学凭证构成疑问。证明这不是领域成熟的问题;我们表明,最新的逆设计方法,同时能够改善这些拓扑波导的定向发射,但仍将它们显着地落后于常规(滑动平面)光子晶体波导的操作。我们的结果和结论为改善定量预测的量子非线性效应的实施铺平了道路。
令人信服的Majorana零模式(MZM)的签名是基于拓扑超导性(TSC)实现易耐断层量子计算的必要要求。除了改进制造技术外,探索化学计量的TSC平台是抑制MZMS特征的琐碎内置模式影响的另一种途径。化学计量过渡金属二核苷(TMD)是有希望的,但是诱导磁性涡流范围内的磁性涡流范围受到MZMS的限制,受到小垂直上的临界临界率限制。在这里,我们提出,嵌入TMD的chalcogen空位(CVS)的线缺陷是用于实现稳定MZM的化学计量计量的TSC候选物,而无需在平面内磁场范围内范围内TSSS。对1H-MO X 2、1H-W X 2和1T-PT X 2(X = S,SE或TE)单层缺陷的详细分析和计算表明,通过非中性集体组对称性对奇数型旋转耦合效果,称为抗对称性旋转 - 铲耦合效果,称为奇数配对的起源。第一原理TSC相图的构建是为了促进对位于线缺陷两端的MZM的令人信服的签名的实验检测。我们的发现丰富了化学计量的TSC候选物,并将根据设备友好的TMD来促进设备制造以操纵和存储量子信息。
热电材料经过几十年的发展,在理论和实验上都取得了长足的进步。随着热电性能的不断提高,材料中引入的缺陷也日趋复杂,为了优化热电性能,在热电材料中引入了零维点缺陷、一维线缺陷、二维面缺陷和三维体缺陷。考虑到各类缺陷的不同特点,深入了解它们在热电输运过程中的作用至关重要。本文对不同类型的缺陷对能带结构、载流子和声子的输运行为等缺陷相关的物理影响进行了分类和总结,并总结了缺陷的实验表征和理论模拟的最新成果,以便准确确定用于热电材料设计的缺陷类型。最后,基于目前的理论和实验成果,综述了利用多维缺陷优化热电性能的策略。
缺陷代表Hopg平板表面上的应变线。Hopg层上的丰富电子作为E FF 2D仪场感到应变(有关评论,请参见[4])。真正影响电子行为的仪表不变的场实际上是应变梯度,尤其是,缺陷充当外部磁场,将电子沿它们沿它们的颗粒中定位,在这些磁场中,沿着缺陷的定位归因于剪切梯度菌株造成的,这是由于diagonal pressations的剪切梯度归因于滴水的形成,因此是由于滴水量的调节而导致的。由于电子被e ff磁场旋转,因此沿hopg表面上观察到的dects沿典型的局部铁磁磁性产生了典型的局部铁磁[5]。不过,还有另一个可能与非那样的国家竞争。众所周知,随机应变波动构成了Hopg板上的疾病的主要来源,并且平面波动是主要的[6]。这些是通过波动的量规场与电子耦合的波动表示[1,6]。在这种情况下,表面上的线缺陷的存在具有至关重要的e ff ect。由于线路缺陷明确打破了表面上的2D均衡对称性,因此应包含应变量规场的E ff efff efcipe仪表作用,作为红外义务项,Chern – Simons术语[7],
范可尼贫血 (FA) 1 的特征是身体异常(身材和骨骼肢体畸形)、骨髓衰竭和恶性肿瘤风险增加。FA 与许多基因有关,其中大多数以常染色体隐性遗传。FA 还可以以常染色体显性或 X 连锁方式遗传。共济失调毛细血管扩张症 (AT) 1 的特征是进行性小脑共济失调、毛细血管扩张、免疫缺陷和恶性肿瘤风险增加。AT 以常染色体隐性方式遗传,由 ATM 中的致病变异引起。布卢姆综合征 1 的特征是严重的产前和产后生长迟缓、阳光敏感的面部红斑和多种癌症易感性。布卢姆综合征以常染色体隐性方式遗传,由 BLM 中的致病变异引起。奈梅亨断裂综合征 (NBS) 1 的特征是小头畸形、身材矮小、免疫缺陷和易患癌症。NBS 以常染色体隐性方式遗传,是由 NBN 中的致病变异引起的。RECQL4 相关疾病 1 包括 Rothmund-Thomson 综合征、Baller-Gerold 综合征和 RAPADILINO 综合征。这些综合征均包括放射线缺陷、骨骼异常、生长缓慢/身材矮小和恶性肿瘤风险增加。它们以常染色体隐性方式遗传,是由 RECQL4 中的致病变异引起的。检测指征符合以下标准的患者有资格接受检测:
重新归一化组(RG)流是识别管理低能现象的自由度的基础框架。其核心前提在于通过无视其微观细节来简化理论,同时保留其低能物理学。这种简化不可避免地减少了自由度的数量,引发了关于这种减少的量化的长期辩论。zamolodchikov的C理论[1]为这类广泛的二维量子场理论提供了第一个精确的量化,从而促进了各个时空维度的大量进步,并扩展了我们对RG流及其含义的理解。将Zamolodchikov的定理扩展到更高的维度,更不用说存在缺陷的QFT,这是一项具有挑战性的努力,导致持续的研究工作旨在阐明二维案例以外的RG流的性质[2-20]。在本文中,我们深入研究了在存在二维缺陷的情况下对RG流的研究。我们的重点仅在于块状QFT是d维欧几里得田地理论的情况,而状态是平坦的空间真空状态。在这样的配置中,缺陷和散装都可以进行RG流,从而使C理论不适用的现有类似物。尽管在两个和更高维度中存在缺陷的历史[21 - 38],但当批量和缺陷经历同时的RG流动时,量化自由度的降低仍然难以捉摸,并且很少解决[39 - 41]。相比之下,缺陷RG流具有固定的保形散装(也称为文献中的DRG)的缺陷RG流量进行了广泛的研究[42 - 54]。1关于线缺陷的RG流[64-67]及其更高维度的概括[68-70]的许多确切结果。尤其是所谓的B-理论[68,70]断言无量纲