简介:体外细胞系模型为研究可用于癌症全身化疗的化合物提供了宝贵的资源。然而,由于数据分散在几个不同的数据库中,这些资源的利用受到限制。在这里,我们的目标是建立一个平台,能够验证化学耐药性相关基因并对可用的细胞系模型进行排序。方法:我们处理了四个独立的数据库,DepMap、GDSC1、GDSC2 和 CTRP。对基因表达数据进行分位数归一化,并分配 HUGO 基因名称以明确识别基因。导出所有药物的耐药性值。使用 ROC 检验计算基因表达与治疗耐药性之间的相关性。结果:我们将四个数据集与 1562 种药物的化学敏感性数据和 1250 种癌细胞系的转录组水平基因表达相结合。我们已利用该数据库建立了一个在线工具,以便在统一的分析流程中关联可用的细胞系敏感性数据和治疗反应 ( www.roc- plot.com/cells )。我们利用已建立的流程对与阿法替尼和拉帕替尼(两种 ERBB2 酪氨酸激酶结构域抑制剂)耐药性相关的基因进行排序。讨论:该计算工具可用于 1) 将基因表达与耐药性关联起来,2) 识别和排序耐药和敏感细胞系,以及 3) 排序耐药相关基因、癌症标志和基因本体途径。该平台将通过验证基因-耐药性相关性和为新实验选择最佳细胞系模型,为加速癌症研究提供宝贵支持。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY 许可 ( http://creativecommons. org/licenses/by/4.0/ ) 开放获取的文章。
选择仪器需要评估场地和放射性核素的特定参数和条件。仪器在使用的环境和物理条件下应稳定可靠,其物理特性(尺寸和重量)应与预期应用兼容。仪器和测量方法应能够检测感兴趣的辐射类型,并且与调查或分析技术相关,应能够测量低于导出浓度指导水平(DCGL)的水平。许多商业公司提供适合本手册中描述的辐射测量的各种仪器。这些公司可以提供有关特定设备的功能、操作特性、限制等的详细信息。
0.05), 且早发型 PE 组 Gal-1 水平和 Gal-9 水平亦显着高于晚发型 PE 组 ( P <0.05)。 早发型 PE 组和晚发型 PE
多位专家已警告人工智能 (AI) 即将超越人类的能力,达到一个“奇点”,届时人工智能可能会发展到超出人类控制的程度。这是否会发生仍是一个推测问题。然而,法律奇点正在到来:不受人类指挥的非人类实体可能首次作为法律主体的新“物种”进入法律体系。这种“跨物种”法律体系的可能性为我们思考如何构建和管理人工智能提供了机会。我们认为,法律体系可能比许多人认为的更能接受人工智能代理。与其试图禁止强大的人工智能的发展,不如将人工智能包装成法律的形式,通过定义法律行动的目标、提供改善人工智能治理的研究议程、将法律嵌入人工智能代理以及培训人工智能合规代理,从而减少不良的人工智能行为。
主题 1 :无障碍健康监测 目标 1.1 确定健康的生物指标 —— 在 5 年内,利用新型传感器识别至少 10 种下一代健康生物指标,这些指标可以作为健康生活 和预防医学实践的一部分进行监测,例如,免疫能力或微生物组组成。 目标 1.2 综合健康诊断 —— 在 20 年内,开发和分发一种简单易用、负担得起的家庭诊断检测试剂盒 ( 健康工具包 ) ,利用新的健 康生物指标,在诊所和社区中使用,满足不同人群的需求,将健康结果的差异减少 50% 。 主题 2 :精准多组学医学 目标 2.1 收集多组学数据 —— 在 5 年内,从来自不同人群的大型队列中收集多组学信息,并确定哪些与至少 50 种高发病率和高 影响的疾病的诊断和管理最相关。 目标 2.2 实现个人多组学 —— 在 20 年内,开发用于诊断、预防和治疗的分子分型,以解决美国疾病相关死亡的主要原因,并 通过开发用 1 000 美元就能完成的多组学分析来实现这些分型。 主题 3 :细胞疗法的生物制造 目标 3.1 提高治疗效果 —— 在 5 年内,扩大用于开发细胞疗法的技术,使细胞活力至少达到 75% 。 目标 3.2 扩大规模 —— 在 20 年内,增加细胞治疗的制造规模,以扩大可及性、减少健康不公平并将细胞疗法的制造成本降低 至 1/10 。 主题 4 :人工智能驱动的治疗药物生物生产 目标 4.1 提高制造速度 —— 在 5 年内,利用国家资源实验室网络解决现有生物治疗药物的自主生产和生物生产障碍,将 10 种常 见处方药的制造速度提高 10 倍。 目标 4.2 增加制造多样性 —— 在 20 年内,将人工智能和机器学习 (AI/ML) 整合到国家资源实验室网络中以设计新的生物治疗药 物,将新药发现和生产的速度提高 10 倍。 主题 5 :基因编辑的先进技术 目标 5.1 提高编辑效率 —— 在 5 年内,进一步开发用于临床的基因编辑系统,以在几乎没有或没有副作用的情况下治愈 10 种已 知遗传原因的疾病。 目标 5.2 扩大规模 —— 在 20 年内,加强生物制造生态系统,每年至少生产 500 万剂治疗性基因编辑制剂。
表型组学,即高维生物体表型分析,是一种量化复杂发育对高温反应的解决方案。'能量代理性状'(EPT)通过视频像素值波动来测量表型,即不同时间频率下的能量值谱。尽管它们已被证明可有效测量复杂且动态发育生物的生物学特性,但它们在评估不同物种的环境敏感性方面的效用尚未得到检验。利用 EPT,我们评估了三种淡水蜗牛胚胎的相对热敏感性,这三种蜗牛的发育事件时间存在显著差异。在 20°C 和 25°C 的两个温度下,每小时对 Lymnaea stagnalis、Radix balthica 和 Physella acuta 的胚胎进行视频拍摄,记录它们的胚胎发育过程。视频用于计算它们胚胎发育期间以及发育过程中各个生理窗口内的 EPT。发育过程中能量光谱的变化表明,不同物种之间的热敏感性存在明显差异,表明 R. balthica 胚胎的胚胎生理和行为总体敏感性相对较高,发育窗口特异性热响应反映了可观察生理的个体发育差异,以及温度引起的生理事件时间变化。EPT 可以比较高维光谱表型,为持续评估发育个体的敏感性提供了独特的能力。这种综合性和可扩展的表型分析是更好地了解不同物种早期生命阶段敏感性的先决条件。