2011 年,ABB 推出了一款高效同步磁阻电机 (SynRM IE4),该电机无需使用稀土磁铁即可提供永磁技术的性能优势。工业设备案例研究表明,根据应用情况,该电机可节省高达 25% 的能源。该电机技术的其他优势包括降低轴承和绕组温度,从而提高可靠性和延长使用寿命。该设计还可以降低电机噪音,从而改善工作环境。SynRM 电机现在符合国际电工委员会 (IEC) 定义的全新 IE5 超高级能效等级。与常用的 IE2 感应电机相比,这些电机的能量损失降低了 50%,能耗显著降低。SynRM 电机由变速驱动器控制,可进一步最大程度地节省能源。
规定的燃烧现场准备活动或活动组合以减轻有问题的土壤问题并控制有问题的竞争植被和再生害虫。如果可能的话,应将使用现场准备处理的使用最小化,并且强度和时机将由地形,土壤和现场条件确定。除非在特殊和批准的情况下,否则不使用典型的现场准备处理,这些处理涉及从现场清除木材残留物(耙子和桩/绕组)。计划站点准备活动将在最佳时间完成。如果要在带有重的松木成分的切割点上种植经过处理的幼苗。如果需要额外的步骤来减少与昆虫和伐木碎片相关的问题以及建立树幼苗,请考虑六个月后的现场准备,但是在伐木后一年之内,随后迅速种植了经过处理的幼苗。
摘要。超导体技术技术的关键问题之一是防止淬火的保护。在将超导体设计为磁铁,线圈甚至电流导线时,应进行设计,以使超导体承受所有操作条件,尤其是那些迅速出现的操作条件,以快速排放或脉冲载荷。在使用Simulia Opera Platform中使用有限元分析的脉冲传输电流条件(零外部场)研究了基于NBTI绕组的超导赛车线圈模型。通过将电容器排放到包括超导体线圈作为元素的RLC电路中,可以产生几毫秒的脉冲持续时间和超过1 ka的峰值电流。已经进行了包括热和电磁溶液的多物理分析。过渡到正常状态和淬灭的发生与预期的临界曲线以及现有线圈几何形状估计的负载线一致。
Majorana fermions,具有量子计算中潜在应用的外来颗粒,对凝结物理物理学引起了重大兴趣。Kitaev模型是研究一维系统中Majorana Fermions出现的基本框架。我们探讨了一个有趣的问题,即在拓扑上琐碎的阶段中,主要金属(NM)侧耦合是否可以出现主要金属(NM)侧耦合(KC)。我们的发现揭示了有亲密的证据,进一步证明,在拓扑阶段,KC可以在邻近的NM地区诱发其他主要植物。通过广泛的参数分析,我们发现了与NM的KC侧耦合中的零的潜力,一对或两对Majorana fermions。此外,我们研究了磁通量对系统的影响并计算绕组数 - 用于表征拓扑阶段的拓扑不变。
穿过一个线圈绕组的交流电会产生磁通量,从而在相邻线圈中感应出电流。电压调节是通过改变线圈匝数来实现的。由于铁芯由钢(一种磁致伸缩材料)制成,这些磁通量(交替方向)会引起机械应变。这会因金属的快速膨胀和收缩而产生振动。这些振动通过油和固定内芯的夹紧点传递到油箱壁,产生可听见的嗡嗡声,称为铁芯噪声(见图 2,底部)。除了铁芯噪声之外,线圈中的交流电还会在各个绕组中产生洛伦兹力,从而引起振动(称为负载噪声),这会增加传输到油箱的机械能。面对这些多个噪声源以及相互关联的电磁、声学和机械因素,ABB 企业研究中心 (ABB) 的工程师
该项目的目的是在过载情况下自动分配变压器的负载,保护变压器免受损坏并提供不间断电源。由于过载,电流过大,绕组过热,可能烧毁,因此效率会下降。因此,通过微控制器并联另一个相同额定值的变压器,通过分配负载来保护变压器。微控制器将第一个变压器上的负载与参考值进行比较。当负载超过参考值时,第二个变压器将共享额外的负载。因此,两个变压器高效工作并防止损坏。在这个项目中,三个模块用于控制负载电流。第一个模块是传感单元,用于感测负载电流,第二个模块是控制单元。最后一个模块是微控制器单元,它将读取来自传感器模块的模拟信号并执行一些计算,最后向继电器发出控制信号。该项目的优点是保护变压器、不间断电源、短路保护和维护目的。
2010 年,Sorgic 和 Radakovic [8] 对浸没在矿物油中的变压器进行了二维模拟,以将冷却系统与油驱动和强制油配置进行比较。2012 年,Tsili 等人建立了一种方法来开发三维模型并预测热点的温度 [9]。这一年,Skillen 等人对一个不对称非等温流二维模型进行了 CFD 模拟,以表征具有锯齿形冷却的变压器绕组中的油流 [10]。2014 年,Yatsevsky 对浸没在自然对流油中的变压器进行了二维模拟,包括铁心、油箱和散热器,以预测热点。所开发的模型表现出良好的性能,并通过实验进行了验证 [11]。最近,Torriano 等人在一种采用自然对流冷却(ON)的比例盘式电力变压器中开发了三维传热模型 [12]。
在本演讲中,我们将讨论我们小组在光子晶体的拓扑方面的进步,将光子合金的概念引入了非周期性拓扑材料。这些新的无序材料表明,在2D光子晶体中将非磁化和磁化成分相结合可以导致非平凡的拓扑和边缘状态,其特征在于反射阶段的绕组。值得注意的是,由于时间反转对称性的局部分解,我们观察到非互联性手性边缘状态。此外,我们提出了具有零标量介电常数和独特的磁性特性,具有零决定因素的独特磁性特性。gdzims非常适合产生复杂的光学脉冲,称为时空涡旋脉冲,与散装dirac点相关。我们的关键发现是GDZIMS的稳定性源于拓扑过渡点的独特关系,揭示了零反射 - 折射率光子学,拓扑光子学和奇异光学的连接。
II。 引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。 这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。 此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。 对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。 因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。 许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。 此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。 本研究旨在量化体重,II。引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。本研究旨在量化体重,