摘要:随着药物晶体表面积的增加可改善溶解动力学和有效的溶解度,纳米化药物晶体已成为一种成功的口服生物利用度的方法。最近,通过利用聚合物和表面活性剂赋形剂在结晶过程中,开发了自下而上的方法来直接组装纳米晶体,以控制晶体尺寸,形态和结构。然而,尽管重大研究研究了聚合物和其他单一添加剂如何抑制或促进药物系统中的结晶,但很少有工作研究多种赋形剂在药物晶体结构和结晶度的程度上的机械相互作用,从而影响配方性能。这项研究探讨了模型疏水药物晶体的结构和结晶度如何由于竞争性非离子表面活性剂(Polysorbate 80和sorbitan monooleate)和表面活性聚合物(甲基纤维素)之间的竞争性界面化学吸附而变化。经典分子动力学模拟突出了关键分子间相互作用,包括表面活性剂 - 聚合物络合和晶体表面表面活性剂筛选,修改所得的晶体结构。并行,在水凝胶薄膜中产生药物纳米晶体的实验证明了药物结晶度随着表面活性剂的重量分数的增加而增加。仿真结果揭示了整体晶体中的加速动力学与实验测量的结晶度之间的联系。关键字:纳米制剂,分子动力学,界面,聚合物,表面活性剂,结晶度据我们所知,这些是第一个模拟,该模拟直接表征了赋形剂表面组成的结果,并将结晶度的实验范围与分子晶体的结构变化联系起来。我们的方法提供了对纳米结晶中结晶度的机械理解,可以扩大口服可兑换的小分子疗法的范围。
近年来,氧化石墨烯纳米片 (GO) 被广泛研究用作水中多种有机分子和重金属离子的吸附剂。1–3 与其他碳基纳米材料(如标准工业吸附剂活性炭)相比,丰富的表面化学基团加上较大的吸附表面积,使其对几类污染物(包括新兴污染物)的吸附动力学和效率更快。4 这些污染物因其在水体中的持久性、流动性以及健康和环境毒性而备受关注。5–7 GO 纳米片的羧基和羰基在有机分子的吸附效率中起着重要作用,因为它们能够形成氢键和金属离子络合。2,3 此外,可以利用此类表面基团的化学改性来提高选择性吸附能力。例如,据报道,聚乙烯亚胺 (PEI) 改性是一种成功的策略,可以利用 p 堆积、络合和
溶解度和溶解速率的增强是药物开发的关键方面,特别是对于生物制药分类系统(BCS)II类药物,其特征在于低溶解度和高渗透率。本评论提供了针对与这些药物相关的挑战所采用的技术和策略的广泛概述,旨在提高其生物利用度和治疗功效。审查首先引入生物制药分类系统(BCS)及其在药物制剂中的重要性,强调了溶解度和溶解速率在确定口服生物利用度中的重要性。挑战,包括沿胃肠道沿胃肠道吸收的制剂困难和可变性。检查了各种溶解度增强的技术,例如粒径还原,盐的形成,溶解技术(共溶性,络合,络合,胶束化),固体分散,环糊精,环糊精络合和纳米粒子配方。此外,还探索了溶解速率提高的策略,包括纳米晶,表面活性剂,喷雾干燥和多孔载体。此外,综述强调了在体外和体内的溶解度和溶解速率的常见评估技术,对于评估配方策略的有效性至关重要。强调了这些技术在预测药物行为和完善药物输送机制方面的重要性。总体而言,这项全面的综述强调了提高药物开发中的溶解度和溶解速率的重要性,尤其是对于BCS II类药物,并为克服制剂挑战的多种策略和方法提供了宝贵的见解,并改善了药物生物利用性和治疗效果。
•我们在这里描述了一个离子 - 交换色谱分析方法的发展和拟合用途的资格,以帮助表征RNP络合•无复合蛋白的数量达到了不同的高原,单域与Dimeric apoer apoer apo-grnas在GRNA上:CAS率≥1•理解这些非元件的核对范围的关系,是键入的核对范围的关系,是纽约的核对范围的关系。化合物作为治疗学
基于互补氢键碱基配对的核酸高度复杂的分子识别能力导致了 DNA 纳米技术研究领域的迅猛发展。1 通过控制 DNA 杂交和结构以响应诸如 DNA/RNA 结合、pH 变化和光照射等刺激,已经创建了大量 DNA 纳米设备、传感器和分子机器。2 金属离子也可用作外部刺激来调节 DNA 结构和功能,特别是通过利用金属介导的非自然碱基配对。3 通过与桥接金属离子络合,两个相反的配体型核碱基类似物之间形成金属介导的人工碱基对。金属介导的碱基配对通常可以稳定 DNA 双链,从而以金属依赖的方式控制 DNA 杂交。为了通过金属络合有效地切换 DNA 功能,我们最近建立了一种新的概念,即双面 5-修饰嘧啶核碱基的金属介导碱基对切换。 4 – 7 双面碱基,如 5-羟基尿嘧啶 ( U OH ) 4,5 和 5-羧基尿嘧啶 ( caU ) 6 被设计成在金属介导的自碱基对 (例如, U OH – Gd III – U OH ) 中形成
影响最终选择单个原材料的主要因素如下。1 成本和可用性:理想情况下,材料应价格低廉、质量稳定并全年供应。2 固体或液体形式的易于处理性,以及相关的运输和储存成本,例如温度控制要求。3 灭菌要求和任何潜在的变性问题。4 配方、混合、络合和粘度特性可能会影响发酵和下游加工阶段的搅拌、通气和起泡。5 达到的目标产品的浓度、其形成速率和每克底物的产量。
转染级聚乙烯亚胺(PEI)是一种强大的,可信赖的且具有成本效益的试剂,被广泛认为是当前体外和体内转染的当前金标准。pei具有高密度的质子氨基基团,每三分之一原子具有氨基氮。这几乎在任何pH值下都具有高缓冲能力。因此,在内体内,PEI破坏了液泡并将遗传物质释放到细胞质中。与DNA,有效进入细胞的稳定络合以及逃脱内体的能力使PEI成为高效的转染试剂,这对于广泛的细胞系/类型兼容,包括最常用的HEK293和在粘附和悬浮培养物中生长的最常用的HEK293和CHO细胞。
1。引言减少腐蚀带来的重大经济损失的最流行策略是使用有机抑制剂[1-5]。此外,正在进行研究以确定在非常低浓度的环境中是否可以使用腐蚀抑制剂。为了在低浓度的特定抑制剂的存在下达到高水平的保护效率,二级分子和/或离子通常需要通过合作吸附或腐蚀金属表面上的合作吸附或络合来增强抑制剂的吸附[6-10]。在当前工作中,检查了硫库的吸附及其在碳钢表面存在的锌离子存在下的潜在增强。酰胺化合物从历史上被认为是腐蚀强大的抑制剂[11-14]。因此,提高硫库抑制剂溶液对锌离子的吸附可能会导致高抑制效率。
在本研究中,我们正在开发优化的、自组装的、ROS 敏感和 ROS 清除纳米粒子 (NP),作为慢性炎症疾病的潜在治疗途径。RAFT 聚合方法能够合成硼酸聚合物,这是系统 ROS 敏感性的基础,依赖于这些聚合物和多酚儿茶酚基团之间的硼酸酯键。我们的 NP 是使用纳米沉淀和微流体方法合成的,并通过尺寸和表面电荷进行表征。进行了 TEM 成像和紫外可见光和荧光光谱研究,以确认 NP 络合和 ROS 敏感性。ROS-Glo H 2 O 2 和 DCFDA 测定将确认巨噬细胞和小胶质细胞中的 ROS 清除。流式细胞术将确认我们的 NP 进入细胞,显微镜将能够观察其线粒体定位。将进行 ELISA 来监测促炎细胞因子,确保我们的 ROS 清除转化为减少炎症。