表E 3的平均平方误差(MSE)和跨样本尺寸n = 100、300和500的方差组件估计量的平均绝对误差(MAE)。MSE和MAE都随着样本量的增加而减小,从而验证了估计器的准确性和收敛性。
主题:顶点项目 I. 客观问题: 1. 研究人员想要研究性别与使用手机之间的关联。本研究收集的数据将是 ____________。 a. 定性数据 b. 定量数据 c. 连续数据 d. 分类数据 2. 收集数据的主要方式(数据收集过程)? a. 实验 b. 调查 c. 访谈 d. 观察 3. 数据科学家将使用 ___________ 进行预测建模? a. 人工智能 b. 机器学习 c. 训练集 d. 深度学习 4. 哪一个不属于分类损失? a. 对数损失 b. 平均绝对误差 c. 指数损失 d. 铰链损失 5. 哪一个过程不属于顶点项目? a. AI 模型 b. AI 项目周期 c. 部署 d. 数据收集 6. 哪一个不属于回归损失? a. 对数损失 b. 平均绝对误差 c. 对数 cosh 损失 d分位数损失
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
电动汽车的充电状态(SOC)对于预测剩余电池水平并安全保护电池免受过度电荷和过度充电条件非常重要。在这方面,已经提出了使用反向传播(BP)的神经网络(NN)算法来准确估计电池的SOC。锂聚合物电池在其估计的SOC与电流,电压和温度之间具有非线性关系。在这项研究中,施加了3.7 V/16 AH的锂聚合物电池。在恒定电流和温度条件下以0.5C的排放速率进行了电荷/放电实验。实验数据用于训练返回传播神经网络(BPNN),用于在充电条件下预测SOC和在排放条件下派遣(DOD)绩效的深度(DOD)。由于实验,发现拟议的BPNN模型的误差为排出DOD中平均绝对误差的0.22%,而在10、50、100和150个周期中,充电SOC中的平均绝对误差的0.19%。因此,确认了设计的BP算法的SOC学习模型的高性能。
我们开发了一个深度学习框架,以估计仅从身体表面潜力和躯干几何形状的心脏表面电位,因此省略了有关心脏几何形状的信息。该框架基于图像到图像的翻译,并介绍了三个组合:将3D躯干和心脏几何形状转换为相应的标准2D表示,以及基于Pix2Pix网络的自定义深度学习模型的效率。使用11名健康受试者和29个ID型心室心室纤颤(IVF)患者,其框架的平均绝对误差(MAE)的平均平均绝对误差(MAE)为0.012±0.011,平均相似性指数量度(SSIM)为0.984±0.026。For the concatenated electrograms (EGMs), the average MAE was 0.004 ± 0.004, and the average Pearson correlation coefficient (PCC) 0.643 ± 0.352.估计激活和恢复时间之间时间差的绝对平均值为6.048±5.188毫秒,而18.768±17.299 ms,分别是分数。这些结果证明了与标准心电图相当的性能而无需CT/MRI,这表明该框架的潜在临床应用。
摘要:几何特征是表征激光直接沉积质量的重要手段,提高预测模型的精度有助于提高沉积效率和质量。模型主要输入变量为激光功率、扫描速度和送粉速率,输出变量为熔轨宽度和高度。应用基于径向基函数(RBF)的多输出支持向量回归(M-SVR)模型,建立了熔轨几何特征预测的非线性模型。采用正交试验设计进行试验,随机选取试验结果作为训练和测试数据集。一方面,与单输出支持向量回归(S-SVR)建模相比,该方法将高度预测的均方根误差降低了22%,且训练速度更快,预测精度更高;另一方面,与反向传播(BP)神经网络相比,宽度的平均绝对误差降低了5.5%,平均绝对误差更小,泛化性能更好。因此,建立的模型可以为精确选择直接激光沉积工艺参数提供参考,提高沉积效率和质量。
摘要尽管OOD每年造成数百万美元的经济和社会损失,但居住在发展中国家(例如巴西)的许多人由于其成本而无法访问Ood Alert System。为了解决这个问题,我们提出了一个廉价且强大的河流洪水检测系统,可以将其放在任何河流中,并在其床边处有一个地面。我们系统的新颖性是使用o的原始图像,无需预处理。因此,我们的方法可以使用城市环境中现有的监视摄像机进行部署。建议的系统通过使用深神经网络(DNNS)对河水刀片进行语义分割来测量河流水平。然后,它使用计算机视觉(CV)来估计水位。如果水位接近或高于危险阈值,则它会在没有人类干预的情况下自动发送警报。此外,我们的系统可以以3.32 cm的平均绝对误差(MAE)的平均绝对误差(MAE)成功测量河流的水位,这足以检测到何时何时过度OW。该系统也可靠地从不同的相机观点和照明条件来测量河流水位。我们展示了我们的方法的生存能力,并评估了原型的