简介。热力学相变描述了在外部参数的绝热变化下颗粒的宏观集合状态的变化。例如,某些电气导体从电阻状态(即正常导体n)转到临界温度以下以下的无耗散状态(超导体S)。同样,由两个S触点弱连接的约瑟夫森连接(JJ),当由大于临界电流i c大的直流电流驱动时,从零电阻态转换为电阻状态。当系统由迅速变化的参数驱动时,会发生动态相变,以使系统没有时间平衡。在这里,我们研究了超导体 /正常金属 /超导体连接(即SNS,即JJ,弱连接由正常金属组成的JJ)中的这种动态相变,该振幅和频率分别大于I C,并且分别在N中大于n,弱连接是正常金属组成的)。
简介 - 量子霍尔状态的特点是它们对运输系数的精确量化,例如霍尔电导率[1],它反映了系统的拓扑不变性。除了电导率之外,已经确定了对托型和几何形状之间相互作用的更深入的见解。其中,大厅的粘度已成为一个关键的几何传输系数,在绝热变化对系统度量的变化下捕获了量子霍尔状态的响应[2-4]。在二维系统中,如果该区域保持恒定,则此类度量变形等同于复杂结构的变化,对于圆环而言,该模块参数τ=τ=τ1 +iτ2,用τ∈H和h,每半平面上升。因此,霍尔粘度可以理解为复杂结构模量空间上的浆果曲率,该曲率控制了量子霍尔态对τ绝热变形的响应。这种联系是在Avron,Seiler和Zograf [2]的开创性工作中首次建立的,将其与量子霍尔状态的固有几何形状联系在一起。重要的是,相应的无耗散传输系数ηh是由与此曲率相关的第一个Chern数进行量化和确定的[5]。这种洞察力不仅强调了大厅的粘度是二维间隙系统的重要特征,从而破坏了时间反转对称性,而且将其定位为基本的拓扑不变性,以补充霍尔电导率。在[5]中,对几何绝热转运的概念进行了扩展,以对较高属(g> 1)的表面进行,并引入了一种新型的运输系数,即中央电荷[6,7],这是由重力异常引起的。此central电荷量化了量子霍尔对几何变形的普遍响应,将其链接到拓扑和保形场理论不变性。
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器