Born-Oppenheimer近似是多体Schrodinger方程的最重要简化之一。通过忽略核运动,可以在所谓的绝热系统中分离核运动和电子运动。在这种绝热状态下,核运动逐渐发生,使该系统始终是瞬时哈密顿量的能量特征功能。Born-Oppenheimer近似导致电子,旋转和振动自由度的典型范式,可以独立计算。当核运动与电子运动耦合时,出现了Oppenheimer制度的局限性,这就是所谓的振动耦合。这种绝热状态通常发生在光化学或化学反应中,在光化学或化学反应中,核运动变得足够重要,可以发挥振动耦合。对于每个绝热状态,可以绘制势能表面(PE)。如下图所示,不同的激发状态势能表面通常在单个点上退化,该点形成了两个表面相交的锥形形状。这是圆锥形的交叉点,即可能的堕落度的0尺寸空间。圆锥形交叉点是理解状态之间的过渡的关键,尤其是在诸如光化学中发生的激发态动力学中。例如,在荧光中,从单重击状态s 1到单线基态S 0发生过渡,这可能是作为圆锥形相交的接缝的过渡而发生的。
开放量子系统、量子比特-场相互作用的数学操控取决于对主阻尼 [1] 和内在退相干 [2] 方程的分析/数值求解能力。为了解决这些操控问题,在有限的物理环境下研究了开放系统的量子现象 [3-7]。量子几何相是量子力学中的一个基本内在特征,是量子计算的基础 [8]。如果最终的时间相关波函数回到其初始波函数,则量子系统的演化(从初始波函数到最终的时间相关波函数)是周期性的。当这些量子系统的演化不是周期性的时,几何相不再表现出稳健性,所关注的相关量是总相位,称为 Pancharatnam 几何相 (PGP) [9]。PGP 的物理含义是初始状态和最终状态发生干涉,内积的振幅反映了状态之间的相位差。 PGP 在中子干涉仪中实验性地进行了 [10,11]。此后,Berry [12] 在绝热系统中明确定义了几何相,并将其扩展到非绝热循环 [13] 和非循环 [14,15] 演化的量子态。几何相被提出用来实现不同量子模型的几何量子计算,例如:离子阱 [16]、腔场中的原子 [17] 和超导电路 [18]。时间相关的几何相在更多的物理模型中得到了研究,例如:腔 QED 模型充满了非线性介质并包含量子阱 [19],相位量子比特色散耦合到有损 LC 电路的模型 [20] 和具有斯塔克位移的囚禁离子模型 [21]。描述位于孤立腔体中的量子比特之间传输量子态的物理模型,这些量子比特通过光纤模式连接,是构建量子网络的有效系统。在单光子级量子通信中,光纤的使用取得了重大进展 [ 22 ]。这些模型对于设计
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)