摘要 - 虽然粒子中的方法(PIC)方法是相当的,但对新开发的方法和单个代码的验证和验证主要集中在一些测试案例的特殊选择上。这些测试用例中的许多涉及一维模拟。这是由于(准)分析解决方案的可用性或历史原因。ad的测试通常集中于对特定物理问题(例如粒子排放或碰撞)的研究,并且不一定研究完整特色的PIC代码所需的算法套件的综合影响。由于三维(3D)代码成为标准,因此缺乏基准测试可以确定这些代码的有效性;现有论文要么不研究数值实验的细节,要么提供其他可测量的数字指标(例如噪声),这些指标是模拟的结果。本文旨在提供几种测试用例,可用于验证和基准在3D中的细胞代码中粒子标记。我们专注于无碰撞的示例,并且可以以合理的计算能力运行。四个测试案例以显着的细节呈现;其中包括基本的粒子运动,束扩展,血浆的绝热膨胀和两个流不稳定性。所有提出的案例均可根据现有的分析数据或其他代码进行比较。我们预计这些情况应该有助于解决基准标记和验证问题的空隙,并有助于在细胞代码中开发新粒子。
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets L. Bottura(1), C. Accettura(1), A. Kolehmainen(1), J. Lorenzo Gomez(2), A. Portone(2), P. Testoni(2) (1) CERN, Geneva, Switzerland (2) Fusion for Energy (F4E), Barcelona,西班牙摘要MUON对撞机是被认为是高能物理学的下一步的选择之一。它面临许多挑战,并非最不重要的是超导磁铁技术。目标和捕获电磁阀是其中之一,大约18 m长的通道由轴向电磁磁铁组成,轴是20 t的1.2 m自由孔和峰场。其中一个主要问题来自核辐射环境,可能影响线圈的稳定操作,及其材料完整性。能量光子会导致较大的辐射热负荷,在冷质量中的几个kW的阶数,并沉积相当大的剂量,几十mgy。中子在10 -3 dpa的水平下造成物质损害。这些值处于超导线圈技术的当前限制。我们在这里描述了目标的概念设计并捕获了螺线管,重点是HTS电缆设计,这在很大程度上是受到麻省理工学院开发的毒蛇概念的启发。我们展示了如何解决特定于选择的HTS电缆的边缘和保护,冷却和机制。引言2021年欧洲粒子物理战略的更新已确定五个高优先级R&D主题将针对高能物理学的下一步[1]。比田间的μ子的回旋半径大得多,因此梁在通道中的绝热膨胀。所确定的主题之一[2]是Muon Collider(MC)的概念设计,该机器可以在能量前沿探索物理。MC可以在非常高能量的情况下提供点状颗粒的碰撞,因为可以在环中加速muon,而不会受到电子经历的同步辐射的严重限制。对于超过3 TEV的质量中心能量,MC可以为通向能量边界的高光度对撞机提供最紧凑,最有效的途径。然而,对高光度的需求面临着由于静止时期短暂的寿命(2.2μs)引起的技术挑战,以及难以生产带有较小散发体的臂线束的困难。应对这些挑战需要协作[3]来发展创新概念,尤其是在超导磁铁领域。[4]最苛刻的挑战之一,本文的重点之一是托管目标和捕获通道的螺线管,该通道产生了宇宙束。muons是由于正质和负亲的衰减而产生的,这些衰变是由短,高强度质子脉冲与固体靶标(例如碳棒)碰撞所产生的。PION生产目标插入稳态的高场螺线管中,其功能是捕获电荷的亲,并引导它们进入创建MUON的衰减通道。沿通道轴的磁场轮廓需要具有特定的形状,目标峰场为20 t,在通道出口的衰减约为1.5 t,总长度约为18 m。场的特征长度约为2.5 m,即