和百分比,而连续变量则在适当情况下总结为平均值和标准差或中位数(最小值-最大值)。使用 Kolmogorov-Smirnov 检验确认连续变量数据分布的正态性。对于两组之间连续变量的比较,使用学生 t 检验或 Mann-Whitney U 检验,具体取决于统计假设是否成立。进行了单变量和多元逻辑回归分析,以确定预测 NAC 后完全缓解的因素。每个变量都被建模为单变量,不考虑其他变量,并通过多元逻辑回归揭示共同效应。对于对反应具有统计学显着影响的变量,报告了优势比 (OR) 和置信区间 (CI)。
制定和解决涉及随机变量的问题,并应用统计方法来分析实验数据。将假设的估计和检验概念应用于案例研究。参考其分析性,使用Cauchy的积分和残基定理分析复杂函数。Taylor's和Laurent的复杂功能系列扩展。单元I:基本概率8 L概率空间,条件概率,独立事件和Baye定理。Random variables: Discrete and continuous random variables, Expectation of Random Variables, Variance of random variables UNIT-II: Probability distributions 10 L Binomial, Poisson, evaluation of statistical parameters for these distributions, Poisson approximation to the binomial distribution, Continuous random variables and their properties, distribution functions and density functions, Normal and exponential, evaluation of statistical parameters for these distributions单位III:假设的估计和测试10 l引入,统计推断,经典估计方法。:估计点估计值的平均值,标准误差,预测间隔,估计单个样本的比例,两个均值之间的差,两个样本的两个比例之间的差异。统计假设:一般概念,检验统计假设,有关单个均值的测试,对两种均值进行测试,单个比例的测试,两个样本:两倍的测试。教科书:单元-IV:复杂的分化10升限制,复杂函数,分析性,Cauchy-Riemann方程(无证据),找到谐波共轭,基本分析函数(指数,三角学,对数)及其性质及其性质,共形映射,mobius变换。单元V:复杂的集成10 L线积分,库奇定理,库奇的积分公式,分析函数的零,奇异性,泰勒的系列,劳伦特的系列,残基,库奇残基定理(所有定理都没有证明)。
摘要:本文旨在识别和量化重要的经济因素,这些因素决定了运输和服务部门中中小型企业(SME)业务环境质量的质量。该案例研究是对捷克共和国和斯洛伐克的258家公司的样本进行的。统计方法,例如回归分析和相关分析,用于评估经验数据。这些统计方法测试并验证提出的几种统计假设。案例研究的结果带来了有趣的发现。发现显示了宏观经济环境对商业环境质量的影响。相反,货币政策和利率,公司融资以及人口消费不会影响运输和服务部门的商业环境质量。结果也代表了支持商业环境或国家机构创建材料来改善所选国家服务或运输的材料的基础。
摘要 - 尽管在机器学习安全方面进行了大量的学术工作,但对野外机器学习系统的攻击的发生知之甚少。在本文中,我们对139个工业实践的定量研究进行了报告。我们分析了攻击发生和关注,并评估统计假设对影响威胁感知和暴露的因素。我们的结果阐明了对部署机器学习的现实世界攻击。在组织层面上,虽然我们没有预测样本中威胁暴露的预测因素,但实施防御量取决于暴露于威胁或预期成为目标的可能性。我们还提供了从业人员对单个机器学习攻击的相关性的答复,揭示了不可靠的决策,业务信息泄漏和偏见引入模型等复杂问题。最后,我们发现,在个人层面上,关于机器学习安全性影响威胁感知的先验知识。我们的工作为在实践中的对抗机器学习方面进行更多研究铺平了道路,但收益率也可以洞悉调节和审计。
物理基础中最困难的两个问题是(1)引起时间的箭头,以及(2)量子力学的本体论是什么。我对这两个问题提出了一个统一的“ Humean”解决方案。张力使我们能够将过去的假设和统计假设纳入最佳系统,然后我们用它来简化宇宙的量子状态。这使我们能够以一种没有明显的复杂性来授予量子状态的法态状态,并探讨了过去假设的原始版本面临的“超类问题”。我们将结果理论称为Humean统一。它提供了时间不对称和量子纠缠的一致解释。在这一理论上,引起时间的箭头也是量子现象的原因。新理论具有可分离的马赛克,最佳的系统,简单且无关,量子力学和特殊相对论之间的张力较小,并且理论和动态统一性更高。Humean Unifiration会导致新见解,这些见解对Humeans和非人类都有用。
在几项经验研究中,已经报道了随机梯度降低(SGD)中的重尾现象。以前的作品中的实验证据表明,尾巴的重度与SGD的概括行为之间存在很强的相互作用。从理论上讲,为了解决这一经验现象,几项作品做出了强有力的拓扑和统计假设,以将概括误差与沉重的尾巴联系起来。最近,已经证明了新的概括范围,这表明了概括误差和重型尾巴之间的非单调关系,这与报道的经验观察者更相关。尽管可以使用重尾随机微分方程(SDE)对SGD进行建模,但这些界限不需要有条件的拓扑假设,但它们只能应用于简单的二次问题。在本文中,我们在这一研究方面构建,并为更通用的目标功能开发了一般的界限,其中也包括非凸功能。我们的方法是基于重尾sdes及其离散化的范围瓦斯汀稳定性范围,然后我们将其转换为概括界。我们的结果不需要任何非平凡的假设;然而,由于损失功能的一般性,他们对经验观察的启示更加明显。
在统计和人工智能的交集中,这是突破理论和应用界限的深刻机会。在本演讲中,我将分享我的研究旅程,以推进AI的统计基础,该基础结构为三个相互联系的部分,每个部分都解决了预测性AI和生成性AI中的关键挑战。第1部分探讨了我在动态定价方面的工作,这是预测AI的基石。通过开发基于强盗的框架,始终有效的推理和高维正规化的自适应定价模型,我解决了动态决策固有的探索 - 探索探索权衡。这些模型可以在电子商务和广告等行业中统计严格,隐私感知和实时应用程序,以证明统计方法如何在复杂市场中取得影响力。第2部分的重点是隐私审核,桥接预测性AI和生成AI的领域。本研究利用统计假设测试来设计数据驱动的框架,以量化和减轻隐私风险,包括成员推理攻击和生成模型中的数据复制。通过将理论保证(例如差异隐私)与实际评估相结合,我旨在提供可行的工具,以将隐私保存与分析效用保持一致,从而解决现代AI中最紧迫的问题之一。
比例并根据统计检验的结果得出结论。使用数字理论设计各种密码。将图理论应用于网络路由问题等实时问题。单元I:基本概率和随机变量:随机实验,样本空间事件,概率的概念概率的公理,一些有关概率分配的重要定理,条件性概率定理,对条件性概率,独立事件,独立事件,贝叶斯定理或规则。随机变量,离散概率分布,随机变量的分布函数,离散随机变量的分布函数,连续随机变量单元II:抽样和估计理论:种群和样本,使用和不替换随机示例进行统计推理采样,随机数量量级统计分布,频率分布,相对频率分布,相对分布,计算,计算,计算,均值分布,计算,计算,计算,计算。公正的估计值和有效估计点估计值和间隔估计值。可靠性置信区间的人口参数估计,最大似然估计单元III:假设和意义的检验:统计决策统计假设。null假设假设测试和I型和II型误差的显着性和II型误差的显着性测试水平,涉及正态分布的一尾和两尾测试P值的特殊样本的特殊测试特殊测试的特殊样本具有估算理论和假设测试特征曲线之间的小样本关系的特殊显着性测试。测试质量控制图的功率将理论分布拟合到样本频率