摘要。应用虚拟维修方法和人机工程学基本理论,对两种现有发动机反推装置设计进行了权衡研究。对比分析了集成推进系统(IPS)的O型管道反推装置和传统门式D型管道反推装置两种构型的维修性。针对O型管道和D型管道反推装置在结构、工作原理以及维修过程中的运动方式等差异,在相同空间约束条件下完成了两种反推装置的结构建模和运动学仿真。以DELMIA软件为平台,通过对两种民用发动机反推装置进行虚拟维修仿真,提出了可达性分析、可视性分析、具体拆装时间估算、工作空间分析等部分人机工程学研究与评价。为今后国产发动机反推装置的设计选型、方案分析、技术评估等提供了技术储备。
维修性是指产品在规定的使用条件下,在规定的时间内,按照规定的程序和方法进行维修,保持或恢复规定状态的能力。维修性是产品设计时所赋予的一种固有属性,它使维修变得简单、迅速、经济[1]。简言之,维修性不是自动生成的,而是由设计形成的特性。DFM可以在飞机设计阶段从根本上改善飞机的维修特性。传统的飞机维修性设计依赖于实物样机或样机,导致维修相关的研发工作拖延,设计人员与维修人员沟通协调不畅等诸多问题。利用CAD技术进行飞机维修性和人因工程分析取得了显著的效果,1995年,洛克希德·马丁公司利用CAD技术成功地解决了F-16项目中与维修性和人因相关的技术问题[2]。随后,洛克希德·马丁公司在JSF项目中采用虚拟仿真平台DELMIA对发动机拆卸和武器装载过程进行了仿真,取得了时间和经济方面的诸多效益[3]。在提高产品维护性能和生产效率、缩短研制周期、节省资金等方面,
签署人欢迎发布有关车辆设计循环要求和管理寿命终止车辆的规定的提案,并要求更强大的修复和重复使用,以加强消费者的选择,当地的工作和企业以及欧洲的战略自主权,并确保符合废物等级和减少环境应变。该法规必须促进车辆的模块化设计策略,确保以公平和非歧视性价格的相关备件和软件更新的长期供应,解决反更换实践,并保证获得维修信息。特别是考虑到它们在成本,物质使用和车辆功能方面的重要性,该法规还必须确保电池的维修性。