金属腐蚀已成为全球性问题,它不仅因机械强度下降而引发事故,而且造成巨大的经济损失。缓蚀剂是保护金属材料免受不同介质腐蚀最有效和最经济的策略之一。一般来说,缓蚀剂有无机缓蚀剂、有机缓蚀剂和聚合物缓蚀剂[1-3]。与无机缓蚀剂相比,有机缓蚀剂和聚合物缓蚀剂价格低廉,功效更强。更重要的是,有机缓蚀剂和聚合物缓蚀剂都可以合理设计并易于合成。众所周知,缓蚀剂在金属表面的吸附和相应的黏附性能在缓蚀剂的应用中起着重要作用[4]。因此,吸附基团被广泛应用于缓蚀剂的结构设计中。一些先驱性综述论文已经总结了有机缓蚀剂的研究进展[5,6]。与小分子有机缓蚀剂相比,聚合物缓蚀剂具有以下优势(如图1所示):(i)通过调整重复单元的数量,可以在一个分子中引入更多的吸附基团;(ii)不同的吸附基团可以通过共聚(例如单体A和单体B共聚)集成到同一聚合物中,产生协同吸附效应;(iii)聚合物缓蚀剂的超分子自组装结构可以优化聚合物缓蚀剂的结构,以达到最佳的吸附性能;(iv)聚合物链的柔韧性和移动性提供了可加工性,也可以与无机缓蚀剂形成杂化/复合材料,以达到更好的防腐性能。杂环化合物(如图1所示)由于杂原子的电子中心密集,被认为是优异的缓蚀剂,然而其合成过程通常对环境十分有害。可以通过增加聚合物抑制剂的分子量(换句话说,重复单元的数量)来增加其吸附位点,并且可以成为使用杂环化合物的潜在候选者
本文件按“原样”提供,不提供任何形式的担保。ChampionX 不提供任何明示或暗示的担保,包括但不限于适销性、特定用途的适用性或任何用途的适用性、所有权和非侵权性的暗示担保。虽然在编写本文件时已采取合理的谨慎措施,但 ChampionX 不声明或保证本文件的内容准确、完整、可靠、最新或无错误。
菠萝蜜种子具有作为腐蚀抑制剂的巨大潜力,因为其抗氧化剂含量可以抑制金属的腐蚀速度。本研究的目的是确定浸泡时间变化对腐蚀速率的影响,确定菠萝蜜种子提取物抑制腐蚀速率的效率,并确定不使用抑制剂和使用抑制剂时高碳钢中发生的腐蚀类型。本研究采用浸渍法提取菠萝蜜种子,并用重量损失法测定样品中的腐蚀速率值,并用SEM测试确定样品中发生的腐蚀类型。本研究得到了在无缓蚀剂溶液浸泡10天、20天、30天的腐蚀速率值,分别为263.46 mpy、365.93 mpy、426.92 mpy。同时,使用缓蚀剂溶液浸泡10天、20天、30天的腐蚀速率值分别为71.62 mpy、53.41 mpy、44.95 mpy。这些结果产生的抑制效率值为72.81%、85.40%和89.47%。在SEM测试中,未加入缓蚀剂溶液的样品发生的腐蚀类型为点蚀,而浸泡在缓蚀剂溶液中的样品发生的腐蚀类型为均匀腐蚀。关键词:抑制剂,腐蚀,腐蚀速率,SEM。
本文对环境友好型抑制剂的获取及其在实践中的应用进行了研究。绿色抑制剂的来源是猪毛菜植物,研究了从该植物中提取绿色抑制剂提取物的方法。研究了所得提取物在0.5 M HCl 溶液中作为绿色抑制剂对碳钢结构的防腐作用。在确定猪毛菜植物绿色抑制剂的有效性时,在两种不同温度(298 K 和 313 K)和不同浓度(200 mg/L、400 mg/L、600 mg/L 和 1000 mg/L)下进行了实际实验。利用朗缪尔和特姆金等温线研究了绿色抑制剂在钢表面的吸附。还研究了温度和浓度对腐蚀速率的影响。采用重量法测定绿色抑制剂的有效性,发现其最大浓度为 91.86%。通过扫描电镜分析研究了该缓蚀剂在钢材表面及试验后钢样中的作用机理,结果表明,猪毛菜提取物的主要成分中含有杂原子有机化合物,是一种良好的绿色缓蚀剂。
本研究旨在通过失重法使用麒麟叶提取物 (Chromolaena odorata) 测定 ASTM A36 钢在海水介质中的抑制效率和腐蚀速率。添加的抑制剂为麒麟叶提取物,浓度变化为100 ppm、200 ppm、300 ppm、400 ppm 和 500 ppm,喷洒在样品表面,然后浸泡7天。采用重量损失法计算腐蚀速率。研究结果表明,麒麟叶提取物能有效抑制腐蚀速度。当抑制剂添加浓度为400 ppm时,样品的腐蚀速率值最小,为2.053 ppm。同时,在相同缓蚀剂浓度下也获得了最高的缓蚀剂效率,为87%。抑制剂的添加也被证明会影响样品表面的微观结构,因为抑制剂经过吸附并在样品表面形成一层薄层,使薄层成为一道屏障,防止腐蚀环境与样品直接接触,从而抑制腐蚀的速度。关键词:腐蚀率、麒麟叶提取物、天然抑制剂、减肥方法。
1.1 目前市面上有些气雾剂产品(例如空气清新剂、缓蚀剂、除臭剂、杀虫剂、润滑剂、泡沫定型剂及雪雾剂等)含有石油气与其他化学品的混合物。石油气经加压后变成液态,然后储存于气雾罐内作为喷射剂使用。市民在保管及使用这些气雾剂产品时,应注意气体安全。 1.2 本指引为在本港出售的载有石油气的气雾罐(下称“气雾罐”)的安全标准提供指引。本指引不适用于以非石油气气体作为喷射剂的气雾罐,例如压缩二氧化碳、二甲醚等。 1.3 本指引并不包括有关气雾罐内除石油气以外的其他内容物的安全规定。供应商必须确保遵守所有其他相关安全标准及其他本地法定要求。1.4 本指引亦可在 www.emsd.gov.hk 查阅。
摘要:烟叶中含有丰富的单宁化合物,具有作为缓蚀剂的良好潜力。本研究的目的是确定烟叶提取物作为硫酸溶液中腐蚀试样的抑制剂的腐蚀速率和效率。将准备好的烟叶采用浸渍法以乙醇溶剂提取5天,从烟叶中获得单宁。将尺寸为 0.1 x 1.3 x 7.65 厘米的腐蚀试样浸入 1 M H2SO4 腐蚀介质溶液中,并添加烟叶提取物溶液作为对照。乙醇溶剂(1:6)提取的烟叶中单宁含量最高,得率为31.35%。烟叶提取液在最高浓度800ppm时的腐蚀速率值为17.36mm/Y;在腐蚀介质1M H2SO4溶液中,浓度为800ppm,浸泡时间为5d时,烟叶提取液的缓蚀效率为89.82%。
本研究利用量子化学分析方法评估了吖啶及其衍生物吖啶-ACD、吖啶-2-羧酸-ACA、吖啶-2-甲醛-A2C 和 2-乙基-吖啶-2EA 在 Al (110) 表面的缓蚀效果。利用计算化学技术计算了这些缓蚀剂的结合能,发现 ACD 的结合能为 -39.918 kcal/mol,ACA 的结合能为 -53.042 kcal/mol,A2C 的结合能为 -47.001 kcal/mol,2EA 的结合能为 -46.319 kcal/mol。除了结合能之外,还分析了各种 Fukui 函数和能量参数,包括 EHOMO(最高占据分子轨道能量)、ELUMO(最低未占据分子轨道能量)、ΔE(能隙)、ΔNAl(转移到铝表面的电荷)、ω(稳定性指数)和 ΔE_b-d(结合能差)。在所测试的抑制剂中,ACA 在所有参数中表现出最高的结合能,表明与铝表面的相互作用最强。Fukui 函数研究表明,原子 C1、C13、N6 和 N7 对 Fukui (+) 和 Fukui (-) 都表现出较高的 Fukui 值,表明这些原子在与铝表面的相互作用中起着至关重要的作用。ACA 的最佳电子和结合特性使其能够在 Al (110) 上形成坚固的保护层,显著提高耐腐蚀性。总之,ACA 是所研究的吖啶衍生物中最有效的腐蚀抑制剂,为 Al(110)表面提供了卓越的保护。
1.引言木质素是一种结构复杂、难以水解的聚集体,木质素、纤维素和半纤维素是构成植物骨架的三大天然高分子化合物,它们的重量约占植物重量的20%。另外,全世界可以生产大量的木质素,木质素廉价、无毒、无污染,是优良的绿色化学原料[1,2]。造纸工业会产生大量的造纸废液,从造纸废液中提取的木质素被称为工业木质素[3,4]。因此,从工业木质素中提取的木质素不仅成本低廉、可再生降解,而且具有多种活性功能基团,受到了人们的广泛关注。例如木质素的主要化学成分是木质素磺酸盐(图1)和碱木质素,它们带有一些表面活性基团,如羧基、酚羟基等亲水基团以及丙基和苯环等疏水基团,因此木质素在油田化学品、表面活性剂、环保缓蚀剂、沥青改性剂等绿色化学领域具有潜在的原料作用[5-9]。张建军[10]用甲醛对木质素磺酸盐进行改性,发现改性后的羟甲基化木质素磺酸盐在室温下对基浆有增粘作用,高温老化后有降粘、降滤失的效果;胺化木质素可以有效改善油田污泥的松散性,提高油田污泥的吸水率[11]。陈[12]以木质素磺酸盐、甲醛和伯胺/仲胺为原料,制备了一系列木质素磺酸盐Mannich碱钻井液处理剂,结果表明这些化合物在水基钻井液中具有增黏、降滤失、耐高温等作用。目前工业木质素中仍含有颜色较深的半纤维素、无机盐、低聚糖等杂质,这些杂质可能会对工业木质素基钻井液的性能产生较大影响。