一个多世纪以来,意识的神经和病理生理、行为和认知相关性一直是现代众多学科理论研究和实证研究的活跃领域。有意识的认知信息处理无法直接观察到,但可以从学习表现中的阶梯式不连续性或基于突然顿悟的问题解决行为改进中推断出来。据推测,与顿悟相关的知识突然进步需要创造性地重组任务或问题相关信息的心理表征,并分别重组任务或问题以克服认知死胡同或僵局。顿悟事件后学习表现或问题解决的不连续性可用作时间标签,以捕捉有意识的认知信息处理必须发生的时间窗口。根据有意识的认知信息处理的平台理论,重组和重构过程需要在工作记忆中维护任务或问题相关信息,以便执行功能对这些心理表征进行操作。电生理学证据表明,在基于洞察力的问题解决方案之前的工作记忆中的重组和重构过程伴随着包括前额叶皮层在内的皮质区域伽马振荡功率的增加。经验证据和理论假设表明,缝隙连接通道和连接蛋白半通道参与了皮质伽马振荡和工作记忆过程。学习或问题解决表现中的不连续性可以用作时间标签,以研究缝隙连接通道和半通道在有意识的认知处理中的含义。
Well-Perfused Tissues: Brain, Heart, Kidney, Splanchnic organs >>> Skeletal Muscles Poorly-Perfused Tissues: Fat, Bone and other viscera Example: IV bolus of propofol High blood flow & high lipophilicity Rapid distribution into CNS Anesthesia Hypnosis Subsequent slower distribution to skeletal muscle & adipose tissue 血浆浓度。降低了从中枢神经系统降低梯度意识恢复2.毛细管渗透性(由毛细管结构(即由内皮细胞之间的缝隙连接和药物的化学性质暴露于缝隙的地下膜的一部分)
摘要 通过使用针对肝脏(连接蛋白 26 和 32)和心脏(连接蛋白 43)间隙连接蛋白的抗体,我们已将免疫反应性定位到成年啮齿动物脑部冷冻切片中的特定细胞类型。在少突胶质细胞和一些神经元中发现了连接蛋白 32 反应性,而对连接蛋白 26 和 43 的反应性则定位到软脑膜细胞、室管膜细胞和松果体。星形胶质细胞中也发生了对连接蛋白 43 抗体的免疫反应。此外,在胚胎和出生后脑组织成熟过程中,间隙连接蛋白的表达存在差异。连接蛋白 43 和 26 在胚胎脑部的神经上皮中占主导地位,而连接蛋白 32 几乎不存在。出生后 3 至 6 周,连接蛋白 26 在很大程度上从未成熟的脑部中消失;这一时间过程与连接蛋白 32 表达的增加相对应。连接蛋白 43 的表达在整个胚胎和出生后发育过程中保持较高水平。这些发现表明,大脑中的缝隙连接表达是多种多样的,特定细胞类型表达不同的连接蛋白;这种细胞特异性分布可能意味着这些细胞间通道在不同位置和发育阶段的功能存在差异。
在1960年代引入了啮齿动物中枢神经系统(CNS)中多巴胺(DA),去甲肾上腺素(Na)和5-羟色胺定位的组织化学法。它支持中枢神经系统中化学神经传递的存在。下脑茎中的单胺神经元向脑脑,依伯龙和单胺的降序系统形成了单突触的升序系统。单胺是在建议通过中枢神经系统中的突触化学传输来进行的。这种化学传播降低了电气传输的影响。在1969年和1970年代的指示中表明,中枢神经系统中的化学单胺通信的重要模式也通过突触外流体,细胞外流体以及涉及DA,Na和na和羟色胺等跨发司的流动和流动的大脑脑脊液中的长距离通信进行。在1986年,这种传播被Agnati和Fuxe及其同事命名为体积传输(VT),其特征在于发射机静脉曲张和受体不匹配。短距离和长距离VT途径的特征是体积分数,曲折和清除率。哺乳动物中枢神经系统中也存在电气传播,但化学传递处于主导地位。一种电气模式由缝隙连接形成的电突触表示,这些突触代表神经细胞之间的低耐药通道。与化学传播相比,它允许神经细胞之间的动作电位更快。第二种模式基于突触电流生成电场调节化学传输的能力。一个目的是了解如何与电气传输集成到化学传输以及星形胶质细胞中假定的(Aquaporin Water通道,多巴胺D2R和腺苷A2AR)配合物如何显着参与从Glymphatic System中清除废物的清除。vt也可能有助于完成针灸子午线对中药必不可少的操作,鉴于所指出的细胞外VT途径的存在。