作为各种心血管疾病的终末阶段,由于其高死亡率和有限的治疗选择,心力衰竭引起了极大的关注。研究人员目前正在集中精力研究碳水化合物,脂肪酸和氨基酸的代谢,以增强心血管疾病的预后。同时,包括亮氨酸,异亮氨酸和缬氨酸在内的分支链氨基酸(BCAA)在血糖调节,蛋白质合成和胰岛素敏感性中起着重要作用。然而,BCAAS代谢的破坏与高血压,肥胖和动脉粥样硬化等疾病有关。本文探讨了复杂的代谢途径,揭示了破坏的BCAA代谢与心力衰竭进展之间的联系。此外,本文讨论了治疗策略,评估了BCAA对心脏功能障碍的影响,并研究了调节BCAA代谢作为心脏衰竭治疗的潜力。BCAA及其代谢产物也被认为是评估心脏代谢风险的生物标志物。总而言之,本文阐明了BCAA在心力衰竭和心血管健康中的多方面角色,为未来的研究和干预措施提供了指导。
摘要:我们证明,新设计的含有聚合用乙烯基反应基团的氨基酸磷二酰胺树脂 (APdA) 可用于通过 3D 多光子光刻制造亚 100 纳米结构。我们使用原子力和单分子荧光显微镜定量分析了纳米结构的特征尺寸、杨氏模量和功能化。我们的结果表明,由缬氨酸或丙氨酸组成的聚合物主链赋予单体疏水性,将聚合物纳米结构在水环境中的膨胀限制在 8% 以内。尽管膨胀很小,但实验表明,在干燥和潮湿条件下,杨氏模量变化高达 10 倍。为了增强基于 APdA 的结构的多功能性,我们加入了生物素功能化并将其用于固定细胞外囊泡。因此,这些发现凸显了基于 APdA 的纳米光刻光刻胶在生物医学和纳米技术应用方面的潜力。
研究文章比较研究在油漆废水(PWW)M. Ikenna Ejimofor上使用基于动物的Chito-蛋白和硫酸铝的去除浊度颗粒(TDSP)的比较研究* 1,Matthew Chukwudi Menkiti 2,3,Ifechukwu G. Ezemagu 2 1,3 尼日利亚; OrcID:0000-0001-6486 2化学工程。尼日利亚AWKA的Nnamdi Azikiwe大学系; ORCID:0000-0002-2095-7294 3美国德克萨斯州拉伯克大学水资源中心的民用与环境工程系; ORCID:0000-0003-1311-3031收到:12.02.2020修订:06.06.2020接受:13.06.2020摘要摘要比较参数统计的比较有效去除浊度粒子粒子(TDSP)的参数统计数据(TDSP)与提取的自然凝结剂使用“ cpw”(cp)(cp)(pp)和铝糖含量成功,并已硫酸盐(P.) PWW相对于可放电废水的国家环境调节标准为100mg/L的国家环境调节标准,其中包含2669mg/l。 使用改良的Fernandez-Kin方法从蜗牛壳面粉(SSF)提取 CP。 提取的CP主要含有蛋白质(86%)。 从主要官能团中观察到赖氨酸,缬氨酸,丝氨酸和苯丙氨酸的FTIR分析痕迹(NH 3 )尼日利亚AWKA的Nnamdi Azikiwe大学系; ORCID:0000-0002-2095-7294 3美国德克萨斯州拉伯克大学水资源中心的民用与环境工程系; ORCID:0000-0003-1311-3031收到:12.02.2020修订:06.06.2020接受:13.06.2020摘要摘要比较参数统计的比较有效去除浊度粒子粒子(TDSP)的参数统计数据(TDSP)与提取的自然凝结剂使用“ cpw”(cp)(cp)(pp)和铝糖含量成功,并已硫酸盐(P.)PWW相对于可放电废水的国家环境调节标准为100mg/L的国家环境调节标准,其中包含2669mg/l。CP。提取的CP主要含有蛋白质(86%)。从主要官能团中观察到赖氨酸,缬氨酸,丝氨酸和苯丙氨酸的FTIR分析痕迹(NH 3
这项研究评估了利用酿酒剂的木质纤维素水解物(BSG)作为氨基酸(AA)生产的木质纤维素水解物的潜力。主要目标是使用选定的微生物探索BSG水解产物的AA产生。最初,筛选了不同的微生物在BSG水解物上的生长,并通过奶昔和生物反应剂中的培养进一步研究了选定的微生物,以进一步研究AA的生产。从这种筛查中,选择了酿酒酵母和谷氨酸杆菌。C.谷氨酰胺在奶昔和生物反应器中产生丙氨酸,脯氨酸,缬氨酸和甘氨酸。在30小时后在奶昔中发现了最高的丙氨酸产生(193.6±0.09 mg/L),而生产脯氨酸(22.5±1.03 mg/l),Valine(34.8±0.11 mg/L)和甘氨酸和甘氨酸(34.8±0.11 mg/L)和甘氨酸(18.7±1.30 mg/l)(18.7±1.30 mg/l)在Bioreactor中和val(gly)和val(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(8小时)。为了增强谷氨酸梭菌的AA产生,进行了饲喂批处理发酵实验。除甘氨酸外,在饲料批次阶段没有产生AA。S。酿酒酵母在奶昔烧瓶中产生丙氨酸,脯氨酸,缬氨酸和谷氨酸,而在生物反应器中则不会产生。在50小时产生50 h,而在60 h 60小时后,获得了50 h,而产生谷氨酸(66.2±0.49 mg/l),而谷氨酸产生(66.2±0.49 mg/l),获得了最高生产(11.8±1.25 mg/l),脯氨酸(11.8±1.06 mg/L)和Valine(4.94±1.01 mg/L)。这项研究的恶魔通过淹没发酵促进了BSG的几个AA的产生。但是,需要进一步优化以提高生产率。
微生物代谢物在胰岛素抵抗和2型糖尿病(T2D)的发病机理中起关键作用。使用16S rRNA基因测序和代谢组学评估了关于发酵高粱(FS)对T2D及其对代谢物的调节及其代谢物的调节的初步研究。fs可以改善高血糖,胰岛素抵抗,并逆转了与T2D呈正相关的机会性致病细菌(例如振荡器,乙酰屈射器和乙酰维利他)。fs促进了有益细菌(Muribaculum,parabacteroides和Phocaeicola)的生长,与粪便丁酸酯和丙酸酯与T2D成反比。fs降低了微生物代谢产物(硫酸盐,吲哚撒拉酸酯,硫酸硫酸盐,吲哚-3-醛)的血清浓度。fs增加了与T2D的苯基丙酸,苯基硫酸盐,缬氨酸,胆汁酸,牛胆酸,urs氧化胆酸和胆酸的水平。发酵高粱对T2D缓解的有益作用归因于肠道菌群及其相关的属代谢物的调节。
缩写:EGFR=表皮生长因子受体;ERK=细胞外信号调节激酶;G12A=位置 12 的甘氨酸突变为丙氨酸;G12C=位置 12 的甘氨酸突变为半胱氨酸;G12D=位置 12 的甘氨酸突变为天冬氨酸;G13D;位置 13 的甘氨酸突变为天冬氨酸;G12R=位置 12 的甘氨酸突变为精氨酸;G12S=位置 12 的甘氨酸突变为丝氨酸;G12V=位置 12 的甘氨酸突变为缬氨酸;GDP=鸟苷二磷酸;GTP=鸟苷三磷酸;HRAS=Harvey 大鼠肉瘤病毒;KRAS=Kirsten 大鼠肉瘤病毒;LY=LY4066434; MEK=丝裂原活化蛋白激酶;NRAS=神经母细胞瘤 RAS 病毒致癌基因同源物;RAF=快速加速纤维肉瘤;RTK=受体酪氨酸激酶。参考文献:1. Kano Y 等人。Nat Commun。2019;10(1):224。2. Hofmann MH 等人。Cancer Discov。2022;12(4):924-937。3. Ostrem JML 等人。Nat Rev Drug Discov。2016;15(11):771-785。4. Prieto Vallejo L 等人。海报展示于:AACR 2023。摘要 B116。
摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)
摘要 ◥ 肝内胆管癌 (ICC) 是第二大最常见的原发性肝癌类型。ICC 是最致命的恶性肿瘤之一,迫切需要新的治疗方法。研究表明,CD44 变体亚型(而非 CD44 标准亚型)在 ICC 细胞中选择性表达,为开发基于抗体 - 药物偶联物 (ADC) 的靶向治疗策略提供了机会。在本研究中,我们观察到了 CD44 变体 5 (CD44v5) 在 ICC 肿瘤中的特异性表达。CD44v5 蛋白在大多数 ICC 肿瘤(155 个中的 103 个)的表面表达。开发了一种靶向 CD44v5 的 ADC,H1D8 - DC(H1D8 - 药物偶联物),它包含一种人源化抗 CD44v5 mAb,该 mAb 通过可裂解的缬氨酸 - 瓜氨酸连接体与微管抑制剂单甲基金雀花碱 E (MMAE) 偶联。H1D8 - DC 在细胞表面表达 CD44v5 的细胞中表现出有效的抗原结合和内化。由于 ICC 细胞中蛋白酶 B 的表达量很高,该药物优先在癌细胞中释放,而不是在正常细胞中释放,因此在皮摩尔浓度下诱导强效细胞毒性。体内研究表明,H1D8 - DC 对 CD44v5 阳性 ICC 细胞有效,并在患者来源的异种移植模型中诱导肿瘤消退,而未观察到显著的不良毒性。这些数据表明 CD44v5 是一种
染色体分离需要动粒蛋白复合物和有丝分裂纺锤体的协调,这对于两个子细胞之间的准确遗传分裂至关重要。动粒是一种位于姊妹染色单体着丝粒的蛋白复合物。在有丝分裂过程中,可以观察到动粒实际上是在有丝分裂纺锤体的引导下将姊妹染色单体“引导”到伸长细胞的相反极点。有人提出,动粒复合物中的小蛋白 Stu1 有助于延迟芽殖酵母酿酒酵母的后期,直到每条染色体都附着在有丝分裂纺锤体上。Stu1 与纺锤体相互作用,并在纺锤体伸长时与其同步移动。磷酸化可能在调节 Stu1 功能方面发挥重要作用。在酵母中,MELT 是一种常见的磷酸化位点,因此,去除 Stu1 上 MELT 基序上的苏氨酸氨基酸可能会影响姐妹染色单体正确分离的能力,从而导致酵母活力下降。MELT 是真菌中保存良好的序列,并且已知是 Stu1 其他同源物中的磷酸化位点。利用 CRISPR-Cas9 酶,我们将在芽殖酵母 STU1 基因中引入磷酸化无效突变,以将 MELT 序列中的苏氨酸 719 密码子替换为缬氨酸密码子。我们假设这种突变会导致 Stu1 蛋白发生故障,这可能会阻碍其协调纺锤体和着丝粒附着的能力,并进一步阻止有丝分裂期间染色体分离。
摘要:蛋白质质量控制机制在癌症进展中发挥着重要作用,它提供适应性反应和形态稳定性,以应对全基因组拷贝数变异、非整倍体和构象改变的体细胞突变。这种对蛋白质质量控制机制的依赖产生了一种脆弱性,可以通过针对蛋白质质量控制机制的成分来利用这种脆弱性获得治疗益处。最近,含缬氨酸蛋白 (VCP),也称为 p97 AAA-ATPase,已成为癌细胞中可用于药物治疗的靶点,以影响它们对蛋白质质量控制的依赖性。在这里,我们表明 VCP 抑制剂会在几种卵巢癌细胞系中诱导细胞毒性,这些化合物与米非司酮协同作用,米非司酮是一种先前被证明会诱导非典型未折叠蛋白反应的药物。虽然临床上可达到的剂量的米非司酮会诱导较弱的未折叠蛋白反应,但它会增强 VCP 抑制剂 CB-5083 的细胞毒性作用。从机制上看,米非司酮阻断了 ATF6 在内质网 (ER) 应激反应中的细胞保护作用,同时通过 HRI (EIF2AK1) 介导的信号转导途径激活 ATF4 和 CHOP 的细胞毒性作用。相反,CB-5083 通过 PERK (EIF2AK3) 介导的信号通路激活 ATF4 和 CHOP。这种组合激活了 ATF4 和 CHOP,同时阻断了 ATF6 提供的适应性反应,从而增强了细胞毒性作用和协同药物相互作用。