量子比特相干时间是离子阱量子网络节点中的关键参数。然而,用于将量子比特编码为离子的状态之间的能量差波动可能是退相干的重要来源。为了增加任意单量子比特状态的相干时间,可以将状态编码为由两个物理量子比特的联合状态形成的无退相干子空间 (DFS),在我们的例子中,这两个物理量子比特是两个共同捕获的离子。因此,离子量子比特的相干性被动地受到保护,免受对两个物理量子比特产生同等影响的波动的影响。这篇硕士论文介绍了在我们的实验装置中实现无退相干量子存储器的实验结果。为了实现量子存储器,需要一个受控非门 (CNOT)。为了实现 CNOT 门,我们实验装置中的本机门被扩展以完成一组通用量子门。在这篇硕士论文之前,多离子串和纠缠门内的离子量子比特全局旋转已经可用。为了完成一组通用的量子门,将单离子聚焦相位旋转添加到本机门中。然后使用 CNOT 门从双量子比特 DFS 存储和检索单量子比特状态。在 DFS 中存储和检索量子比特的过程完全由量子过程层析成像表征,存储时间为 500 毫秒,过程保真度为 94(6)%。与我们之前在离子阱系统中实现的相比,使用 DFS 编码可以将量子比特的相干时间提高至少一个数量级。
长距离量子通信和网络需要具有高效光学接口和长存储时间的量子存储节点。我们报告了基于金刚石纳米光子腔中的硅空位中心 (SiV) 实现的集成双量子比特网络节点。我们的量子比特寄存器由充当通信量子比特的 SiV 电子自旋和充当存储量子比特的强耦合硅-29 核自旋组成,量子存储时间超过 2 秒。通过使用高度应变的 SiV,我们实现了温度高达 1.5 开尔文的电子-光子纠缠门和温度高达 4.3 开尔文的核-光子纠缠门。我们还通过使用电子自旋作为标志量子比特展示了核自旋-光子门中的高效错误检测,使该平台成为可扩展量子中继器的有希望的候选者。T
摘要当代交流既需要内容供应,又需要数字信息基础架构。现代错误信息的运动尤其取决于跟踪和针对同情受众的后端基础架构,并产生可以维持竞选活动的收入,如果不启动竞选活动。然而,对错误信息的政治经济学知之甚少,尤其是那些有关公共卫生指南和疫苗接种计划传播误导或有害内容的运动。为了了解健康错误信息的政治经济学,我们分析了参与传达有关疫苗接种计划错误信息的59个小组的内容和基础设施网络。凭借独特的跟踪器和通信基础设施数据集,我们演示了错误信息的政治经济学如何取决于平台货币化基础设施。我们提供了一种传播资源动员理论,可以提高对交流环境,组织互动和错误信息生产的政治成果的理解。关键字:混合媒体,疫苗,COVID-19,错误信息,通信资源动员
全基因组关联研究(GWAS)已鉴定出113个影响发生连性脊椎炎(AS)风险的单核苷酸多态性(SNP),并且正在进行的GWAS研究可能会识别100 +新的风险基因座。由于以下挑战,将遗传发现向新型疾病生物学和治疗的翻译很难:(1)在确定与疾病相关SNP调控的因果基因时的困难,(2)(2)在确定相关细胞型的caus型基因的差异方面的困难(2)确定其功能(3),(3)(3)询问因果基因在疾病生物学中的功能作用。本评论将讨论最近的进展和未解决的问题,重点是这些挑战。此外,我们将回顾生物学的研究以及与IL-23/IL-17途径相关的药物的开发,该途径是由AS遗传学部分驱动的,并讨论从这些研究中可以从未来的AS-CYPAID基因的功能和翻译研究中学到的知识。
摘要 我们提出了一种量子算法,用于按重要性顺序对网络节点进行排序。该算法基于有向离散时间量子行走,适用于所有有向网络。该算法理论上可以应用于整个互联网,因此可以用作量子 PageRank 算法。我们的分析表明,量子等级的层次结构与有向树和其他非循环网络的经典等级层次结构非常匹配。然而,对于循环网络,量子等级的层次结构并不完全匹配经典等级的层次结构。这凸显了量子干涉和网络中波动的作用以及使用量子算法对量子网络中节点进行排序的重要性。该算法可以设想的另一个应用是模拟模拟化学复合物的网络上的动态并按反应性顺序对活性中心进行排序。由于离散时间量子行走可以在当前的量子处理系统上实现,因此该算法在量子架构分析中也具有实际意义。
I. 引言 LLN 是许多物联网 (IoT) 解决方案的基本元素。它们在涉及数百甚至数千台设备的大型部署中提供低功耗无线连接。TSCH 技术在 LLN 中的引入获得了广泛认可,因为它提供了 IIoT 应用所需的确定性操作能力、可扩展性和服务质量 [1],[2]。作为此类应用的构建块,无线通信堆栈有望通过利用 IPv6 协议实现互联网就绪,并应在恶劣的工业环境中提供可靠的连接。此外,预计此类解决方案还将允许网络中的某些设备由电池供电。这很有挑战性,尤其是对于针对使用严重受限的硬件平台的低成本系统优化的 LLN 而言。采用 TSCH 有助于解决许多这些问题。
摘要 —本文介绍了适用于自供电无线传感器网络 (WSN) 节点的硬件平台的设计、实现和特性。其主要设计目标是设计一个混合能量收集系统,以延长 WSN 节点在现场环境中部署后的使用寿命。除了实现最佳组件(微控制器、传感器、射频 (RF) 收发器等)以实现最低功耗外,还需要考虑能源,而不是频繁充电或更换电池。因此,该平台采用了多源能量收集模块,从周围环境中收集能量,包括风能、太阳辐射和热能。该平台还包括一个通过超级电容器、RF 收发器模块和主微控制器模块的能量存储模块。实验结果表明,经过适当集成的 WSN 节点系统将储备足够的能量,并满足现场环境中无电池的 WSN 节点的长期供电需求。实验结果和九天的经验测量表明,平均每日发电量为7805.09 J,远远超过WSN节点的能量消耗(约2972.88 J)。