1994 年 9 月 数十名中年男子从遥远的伦敦和洛杉矶来到波士顿,在 1994 年的一个秋季周末重聚,庆祝他们 25 年前的成就。这些科学家和工程师曾设计和建造了 ARPANET,这个计算机网络彻底改变了通讯方式,催生了全球互联网。他们在 20 世纪 60 年代默默无闻地工作;他们中的许多人在为网络做出重大贡献时还只是研究生。其他人曾是导师。他们中的大多数人从未因自己的成就而获得太多认可。总部位于剑桥的计算机公司 Bolt Beranek and Newman 曾是他们的重心,雇用了他们中的许多人,建造并运营了最初的 ARPA 网络,然后随着互联网像一个围绕其最早社区的拥挤城市一样发展,他们逐渐变得默默无闻。现在,在安装第一个网络节点 25 年后,BBN 邀请了所有 ARPANET 先驱者聚集在一起,希望通过举办盛大的周年庆典来提升自己的知名度。许多参加聚会的人多年未见或联系过。当他们进入科普利广场大厅参加周五下午的庆祝活动新闻发布会时,他们环顾房间寻找熟悉的面孔。硅谷一家企业研究机构的负责人鲍勃·泰勒 (Bob Taylor) 来参加聚会是为了追忆往昔,但他的个人使命也是纠正一个长期存在的错误。多年来一直有谣言称 ARPANET 是为了在核攻击面前保护国家安全而建立的。这是一个神话,长期以来一直没有受到质疑,以至于被广泛接受为事实。泰勒曾是国防部高级研究计划局监督计算机研究办公室的年轻主任,他就是 ARPANET 的创始人。该项目体现了最和平的意图——将全国各地科学实验室的计算机连接起来,以便研究人员可以共享计算机资源。泰勒知道阿帕网及其后代,
1994 年 9 月 他们从遥远的伦敦和洛杉矶来到波士顿,几十名中年男子在 1994 年的一个秋季周末重聚,庆祝他们 25 年前所取得的成就。这些科学家和工程师设计和建造了 ARPANET,这个计算机网络彻底改变了通信方式,并催生了全球互联网。他们在 20 世纪 60 年代默默无闻地工作;他们中的许多人在为网络做出重大贡献时还只是研究生。其他人曾担任导师。他们中的大多数人从未因这一成就而获得太多认可。总部位于剑桥的计算机公司 Bolt Beranek and Newman 曾是他们的重心,雇用了他们中的许多人,建立并运营了最初的 ARPA 网络,然后随着互联网像一个在其最早的社区周围拥挤的城市一样发展,他们变得相对默默无闻。现在,在安装第一个网络节点 25 年后,BBN 邀请了所有 ARPANET 先驱者聚集在一起,希望通过举办盛大的周年庆典来提升自己的知名度。参加聚会的许多人多年未见或联系过。当他们进入科普利广场大厅参加周五下午的庆祝活动新闻发布会时,他们环顾房间寻找熟悉的面孔。硅谷一家企业研究机构的负责人 Bob Taylor 来参加聚会是为了追忆往昔,但他的个人使命也是纠正长期存在的不准确之处。多年来一直有谣言称 ARPANET 是为了在核攻击面前保护国家安全而建造的。这是一个神话,长期以来一直无人质疑,以至于被广泛接受为事实。泰勒曾是国防部高级研究计划局计算机研究办公室的年轻主任,也是他发起了 ARPANET。该项目体现了最和平的意图——将全国各地科学实验室的计算机连接起来,以便研究人员可以共享计算机资源。泰勒了解 ARPANET 及其后代,
1994 年 9 月 他们从遥远的伦敦和洛杉矶来到波士顿,几十名中年男子在 1994 年的一个秋季周末重聚,庆祝他们 25 年前所取得的成就。这些科学家和工程师设计和建造了 ARPANET,这个计算机网络彻底改变了通信方式,并催生了全球互联网。他们在 20 世纪 60 年代默默无闻地工作;他们中的许多人在为网络做出重大贡献时还只是研究生。其他人曾担任导师。他们中的大多数人从未因这一成就而获得太多认可。总部位于剑桥的计算机公司 Bolt Beranek and Newman 曾是他们的重心,雇用了他们中的许多人,建立并运营了最初的 ARPA 网络,然后随着互联网像一个在其最早的社区周围拥挤的城市一样发展,他们变得相对默默无闻。现在,在安装第一个网络节点 25 年后,BBN 邀请了所有 ARPANET 先驱者聚集在一起,希望通过举办盛大的周年庆典来提升自己的知名度。参加聚会的许多人多年未见或联系过。当他们进入科普利广场大厅参加周五下午的庆祝活动新闻发布会时,他们环顾房间寻找熟悉的面孔。硅谷一家企业研究机构的负责人 Bob Taylor 来参加聚会是为了追忆往昔,但他的个人使命也是纠正长期存在的不准确之处。多年来一直有谣言称 ARPANET 是为了在核攻击面前保护国家安全而建造的。这是一个神话,长期以来一直无人质疑,以至于被广泛接受为事实。泰勒曾是国防部高级研究计划局计算机研究办公室的年轻主任,也是他发起了 ARPANET。该项目体现了最和平的意图——将全国各地科学实验室的计算机连接起来,以便研究人员可以共享计算机资源。泰勒了解 ARPANET 及其后代,
癫痫发作在大脑网络中的扩散是癫痫患者的主要致残因素,通常会导致意识丧失。尽管在记录和建模大脑活动方面取得了进展,但揭示癫痫发作扩散动力学的性质仍然是理解和治疗药物难治性癫痫的重要挑战。为了应对这一挑战,我们引入了一种新的概率模型,该模型可以捕捉患者特定复杂网络中的扩散动力学。通过白质纤维束成像估计大脑区域之间的网络连接和交互时间延迟。该模型的计算可处理性使其能够对更详细的癫痫发作动力学模型发挥重要的补充作用。我们在患者特定的 Epileptor 网络背景下说明了模型拟合和预测性能。我们针对不同的患者特定网络推导出扩散大小(序参数)作为大脑兴奋性和全局连接强度的函数的相图。相图可以预测癫痫发作是否会根据兴奋性和连接强度扩散。此外,模型模拟可以预测癫痫发作在网络节点间传播的时间顺序。此外,我们表明,随着神经兴奋性和连接强度的变化,序参数可以表现出不连续和连续(临界)相变。平均场近似和有限尺寸缩放分析支持存在一个临界点,在该临界点处,响应函数和扩散大小的波动相对于控制参数表现出幂律发散。值得注意的是,临界点将两种不同的扩散动力学状态分开,其特征是单峰和双峰扩散大小分布。我们的研究为癫痫发作扩散动力学的相变和波动性质提供了新的见解。我们预计它将在开发用于预防药物抵抗性癫痫发作扩散的闭环刺激方法中发挥重要作用。我们的研究结果也可能引起流行病学、生物学、金融学和统计物理学中相关扩散动力学模型的兴趣。
大脑可塑性和功能重组是缺血性中风后患者功能性运动恢复的机制。通过脑电图研究静息态运动网络功能连接已被证明有助于研究信息流中发生的变化并发现与运动功能恢复的相关性。在文献中,大多数将脑电图应用于中风后患者的研究都研究了相互作用的大脑区域之间的无向功能连接。最近,人们开始研究连接的方向性,并提出了许多方法或特征,每种方法或特征都更适合描述不同的方面,例如网络节点之间的直接或间接信息流、耦合强度或其特征振荡频率。每项研究都选择了一种特定的测量方法,尽管文献中并没有达成共识,而且选择最合适的测量方法仍然是一个悬而未决的问题。为了阐明这一方法论方面,我们在此建议结合基于格兰杰因果关系的两个频域测量提供的直接和间接耦合信息,即定向相干性 (DC) 和广义部分定向相干性 (gPDC),以研究与感觉运动节律 α 和 β 相关的静息态定向连接的纵向变化,发生在 18 名接受康复治疗的亚急性缺血性中风患者中。我们的研究结果显示,在亚急性期康复后,信息流经运动前区在运动网络重组中起着重要作用。特别地,DC 强调了运动前区和初级运动区之间的半球内耦合强度的增加,特别是在 α 和 β 频带的同侧病变半球中,而 gPDC 在检测那些变化主要体现在人群中的连接方面更敏感。在 α 和 β 频段均检测到从损伤对侧运动前皮质向辅助运动区流动的因果流减少,在 β 频段观察到从同侧到损伤对侧运动前皮质的半球间连接显著增强。有趣的是,从损伤对侧运动前皮质向损伤同侧运动前皮质的连接与 α 频段上肢运动恢复相关。使用两种不同的定向连接测量方法可以更好地理解大脑之间的耦合变化
抽象的量子技术是物理和工程领域的扩展领域,该方案的开发是基于量子力学的增强或新颖应用的协议和设备的开发。这包括量子计算和量子通信。量子计算机承诺基于与光学和仿真问题相关的叠加以及大量分解的计算速度 - 对我们的经典加密方案构成威胁。量子通知通过根据量子力学定律提供无条件安全的通信通道来解决此问题。此外,量子通信将允许在远程量子计算机之间交换量子信息,从而启用分布式量子计算。连接量子计算机或处理器的基础结构称为量子网络。网络节点处的固定量子位用于执行信息处理或存储操作,而频率量子位连接节点并启用量子信息的传输。光子是出色的量子位,因为它们以光速传播并且具有较小的相互作用横截面。因此,量子网络需要光的量子状态来提供量子量。这些光的量子状态需要纠缠,难以区分和波长匹配,以使它们要么在网络中经历较低的传输损失,要么可以与其他量子技术(如基于原子的量子记忆)接触。在本文中,已经研究了单个自组装的光学活性半导体量子点的单个,无法区分或纠缠的光子的发射,我们选择的量子发射器。所研究的量子点在电信范围内发射或接近rubidium中的D 1-转换。在本论文中执行的实验的主要方面是通过使它们使它们的波长(可降低)来研究发射器到未来的量子网络中,并将它们整合到光子结构中并采用谐振激发方案,以使光子具有不预定的纯度纯度,难以置信的区别能力或实用的相关性。在电信范围内,我们研究了INASP纳米线量子点,其发射的发射从接近界面范围转移到电信O – band和c – band。单个光子发射以类似于其近红外对应物类似的量子点的衰减时间。此外,在电信C带中排放的INAS/GAAS量子点集成到压电 - 电动子板上,并通过使用商业
1 俄罗斯莫斯科科学院 Vernadsky 地球化学和分析化学研究所 2 俄罗斯莫斯科国立核能研究大学 3 俄罗斯莫斯科鲍曼国立技术大学 4 俄罗斯莫斯科科学院 Vernadsky 国立地质博物馆 提交日期 2024 年 9 月 3 日 接受日期 2024 年 11 月 28 日 发布日期 2024 年 12 月 11 日 引用本文:A. Asavin、A. Litvinov、S. Baskakov 和 E. Chesalova,“莫斯科市通过 WSN 技术监测大气的机器人气体分析仪综合体”,地球环境科学洞察,第 1 卷,第 1 期,第 1-6 页,2024 年。版权:摘要 城市大气中的氢含量是环境生态学的一个新的敏感指标。由于这种气体的绝对浓度低和高挥发性,确定这种元素的复杂性需要开发专门的自主综合体来监测 H 2我们开发了一种基于无线数据传输网络 - 无线传感器网络(WSN)技术和由金属-绝缘体-半导体(MIS)结构开发的专用氢传感器的机器人综合体。本文介绍了莫斯科地区两个大气污染程度高低的站点的首批监测数据。结果表明,氢气的走向是互补的,由大气参数决定,但莫斯科中心和其边境的浓度水平差异几乎有一个数量级。这些数据与世界其他城市(巴黎、赫尔辛基等)的监测信息进行了比较。关键词:氢气监测;半导体气体传感器;WSN 网络;MIS 传感器缩写:MIS:金属-绝缘体-半导体;WSN:无线传感器网络 1.简介我们的工作目的是组织对大城市现代大气成分进行长期生态监测。环境大气安全和工业危险情况的控制需要及时对大气进行痕量成分监测。随着无线传感器网络 (WSN) 技术(无线数据传输系统)的出现,创建此类系统的技术取得了重大突破。WSN 是空间分布的自主传感器,用于监测物理或环境条件,例如气体、温度、压力等,并通过网络协作地将其数据传递到主要位置。WSN 由“节点”组成 - 从几个到几百个甚至几千个,每个节点都连接到一个(有时是几个)传感器。每个这样的传感器网络节点都有一个带有内部天线或连接到外部天线的无线电收发器、一个微控制器、一个用于与传感器接口的电子电路和一个能源,通常是电池或嵌入式能量收集形式。我们的项目包括开发一个信息和分析系统,其中包括气体传感器网络和 GIS 技术。该技术的优点是自主工作(长达数月甚至更长时间)、气体传感器的高频可编程测量、低成本(在网络的一个节点上)以及可以将多种类型的传感器连接到一个监控节点。这些作品对构建 WSN 的技术进行了足够详细的描述 [1–3]。还有许多专门的专著 [4] 和定期期刊(“无线传感器网络”、“国际传感器网络杂志 (IJSNet)”、“自组织网络”、“IEEE 传感器”、“EURASIP 无线通信和网络杂志”)。这里我们简要列出 WSN 数据传输技术的主要技术优势:
实践中,需要大规模量子计算机来以更高的速度解决复杂问题,但在实现上存在一些问题,如量子退相干。其原因是量子比特与环境相互作用,从而对误差更敏感[10-12]。解决上述问题的一个合理方法是使用分布式量子计算机减少处理信息时使用的量子比特数量。分布式量子计算机可以由两个或多个具有较少量子比特的低容量量子计算机构建,类似于用于解决单个问题的量子系统网络中的分布式节点或子系统[13,14]。在这种结构中,需要量子(经典)通信协议来在单独的节点之间进行通信。分布式量子计算最早由 Grover [15]、Cleve 和 Buhrman [16] 以及 Cirac 等人 [17] 提出。随后,Ying和Feng [11]定义了一种描述分布式量子电路的代数语言。之后,Van Meter等[18]提出了分布式量子电路中的VBE进位波加法器结构。与此同时,该领域的一些工作集中在通信部分。2001年,Yepez [19]提出了两种类型的量子计算机。在第I类量子计算机中,量子通信用于互连分布式量子计算机的子系统。在II类量子计算机中,使用经典通信代替量子通信来互连分布式量子计算机的子系统或节点。在量子通信中,在网络节点之间传输量子比特的著名方法之一是量子隐形传态(QT)[20–23]。在隐形传态中,量子比特在两个用户或节点之间传输,而无需物理移动它们。然后,在量子比特上本地执行计算;这种方法也称为远程数据。还有一些工作侧重于优化分布式量子电路的通信成本。假设量子比特隐形传态是一种昂贵的资源,这类工作试图减少这种远程数据 [ 24 – 26 ]。在 [24 ] 中,作者考虑了具有公共控制或目标量子比特的连续 CNOT 门。他们表明,这样的结构只需一次隐形传态即可执行两个门。在 [25 ] 和 [26 ] 中,这个想法得到了扩展,并提出了一些算法来减少所需的隐形传态次数。考虑了所有可能导致通信减少的配置。[27 – 29 ] 还分别考虑了使用启发式方法、动态规划方法和进化算法来优化隐形传态次数。另一种方法称为远程门,当节点相距甚远时,它使用量子纠缠直接远程执行门。远程门方法的挑战之一是在位于分布式量子计算机不同节点的量子比特之间建立 n 量子比特控制量子门的最佳实现。根据所考虑的库(如 NCV、NCT、Clifford + T 等),可以使用不同的控制门来合成量子电路的变换矩阵。众所周知的可逆量子门之一是 Toffoli 门。Toffoli 门与 Hadamard 门一起构成了量子计算的通用集。此外,具有两个以上控制量子比特的多控制 Toffoli 门在量子计算中得到广泛应用。因此,实现在网络的不同节点之间应用 n 量子比特远程 Toffoli 门(受控非门)的协议至关重要。
Armor&Mobility(A&M)的秋季版本看了一个未来的世界,即将在战场上进行分裂的决定不再以人类错误估计导致可预防的伤亡的风险做出。人工智能/机器学习技术(AI/ML)有望比以往任何时候都更快,更精确地启用主动命令和控制。由自主感官能力收集的任务数据将创造出最终的情境意识,只有今天才梦dream以求,但在明天的战场上胜利所必需。在2023年美国陆军年度协会(A&M)版本的A&M版本中,我们听到了新安装的指挥官詹姆斯·雷尼将军,美国陆军期货司令部(AFC),奥斯汀,德克萨斯州奥斯汀,令人兴奋的努力正在努力实施实力的变革性现代化,以实现充分的准备,以实现充分的准备,以实现未来的多帝国多元命令(Mdoain Domain Operations(Mdoain Domain Operations)进行。这种准备的很大一部分是联合力量司令部,控制,通信,计算机,网络,智能,监视,侦察(C5ISR)技术,随时随地支持一个不舒张的网络。从依赖视线的日子到高级插件兼容兼容沟通,美国陆军指挥部,控制,计算机 - 战术(PEO C3T)的执行办公室,Aberdeen,Aberdeen Proving Ground,MD,正在促进最新的网络现代化,通过实施命令后基础设施一体化(CPI2)的实施(CPI2),因此继续进行了战斗竞争,因此,该战斗的竞争力量越来越多。没有流动性,世界上所有的指挥和控制(C2)都做得很好。战斗的未来很可能以大型战斗操作(LSCO)的形式表现出来,这将需要立即访问,实时命令和控制,预计将投影到全球范围内。在对移动(C2 OTM)功能的最新以数据为中心的,网络的命令和控制的过程中,陆军PEO-C3T正在基于经过验证的命令柱网络节点连接以在持续装甲的形成网络(AFN)运动过程中实现更大的可靠性(COP)。在战斗的热量中,没有时间弥合网络中的C2差距,但要遵守任务的移动性要求。C2 OTM将使网络能够无需C2差距,而不管该运动现实如何。 当然,如果没有支持任务所需的通信网络基础架构的管理,就不会有任务成功。 在接受MG Robert Edmonson II的坦率采访中,美国陆军通讯 - 电子司令部指挥官(CECOM)Aberdeen Proding Groud,MD,我们收集了有关软件的关键作用,以及该软件的重要作用,该软件的重要维持,在陆军,联合和联盟的连接范围内供应促进陆军,供应连接链,并在供应链接中供应。 与供应链非常吻合,国防物流局(DLA)正在协助改善仓库级别的可偿还性,并继续减少近年来困扰军队的零件交付犯罪。C2 OTM将使网络能够无需C2差距,而不管该运动现实如何。当然,如果没有支持任务所需的通信网络基础架构的管理,就不会有任务成功。在接受MG Robert Edmonson II的坦率采访中,美国陆军通讯 - 电子司令部指挥官(CECOM)Aberdeen Proding Groud,MD,我们收集了有关软件的关键作用,以及该软件的重要作用,该软件的重要维持,在陆军,联合和联盟的连接范围内供应促进陆军,供应连接链,并在供应链接中供应。与供应链非常吻合,国防物流局(DLA)正在协助改善仓库级别的可偿还性,并继续减少近年来困扰军队的零件交付犯罪。,不要错过该版本的轻型战术聚光灯,因为美国海军陆战队用新的超轻型战术工具或ULTV代替了其公用事业任务工具(UTV)。
全基因组关联研究(GWAS)已鉴定出113个影响发生连性脊椎炎(AS)风险的单核苷酸多态性(SNP),并且正在进行的GWAS研究可能会识别100 +新的风险基因座。由于以下挑战,将遗传发现向新型疾病生物学和治疗的翻译很难:(1)在确定与疾病相关SNP调控的因果基因时的困难,(2)(2)在确定相关细胞型的caus型基因的差异方面的困难(2)确定其功能(3),(3)(3)询问因果基因在疾病生物学中的功能作用。本评论将讨论最近的进展和未解决的问题,重点是这些挑战。此外,我们将回顾生物学的研究以及与IL-23/IL-17途径相关的药物的开发,该途径是由AS遗传学部分驱动的,并讨论从这些研究中可以从未来的AS-CYPAID基因的功能和翻译研究中学到的知识。