介绍了复杂的二维配置。该方法在整个流场中使用完全非结构化的网格,从而能够处理任意复杂的几何形状,并在粘性和非粘性流场区域中使用自适应网格划分技术。网格生成基于局部映射的 Delaunay 技术,以便在粘性区域中生成具有高度拉伸元素的非结构化网格。使用有限元 Navier-Stokes 求解器对流动方程进行离散化,并使用非结构化多重网格算法实现快速收敛到稳态。湍流建模使用廉价的代数模型进行,该模型用于非结构化和自适应网格。计算了多元素翼型几何的可压缩湍流流动解,并与实验数据进行了比较。作者
摘要。欧盟 FP7 AVATAR 项目 (大型转子先进气动工具) 已在 DU00-W-212 翼型上以及两个不同的测试设施上进行了高雷诺数的 2D 风洞测试:位于哥廷根的 DNW 高压风洞 (HDG) 和 LM Wind Power 内部风洞。两个测试都执行了两种雷诺数条件:300 万和 600 万。在 300 万雷诺数测试中,两个风洞的马赫数和湍流强度值相似,而在 600 万雷诺数下则存在显著差异。本文对从两个风洞获得的数据进行了比较,结果显示,在 300 万雷诺数下具有良好的重复性,而在 600 万雷诺数下存在差异,这与不同的马赫数和湍流强度值一致。
低雷诺数空气动力学对许多自然和人造飞行器都很重要。多年来,生物学家一直在研究鸟类、蝙蝠和昆虫,而航空航天工程界对微型飞行器 (MAV) 的兴趣也促使其积极研究,研究进展迅速。本书主要关注固定翼和扑翼的空气动力学。本书同时考虑了生物飞行器和微型飞行器,包括基于简单的几何和动力学分析、结构灵活性、层流-湍流过渡、翼型和非定常扑翼空气动力学,总结了将空气动力学和飞行特性与飞行器尺寸联系起来的缩放定律。书中重点介绍了扑翼运动学与雷诺数、斯特劳哈尔数和降低频率等关键无量纲参数之间的相互作用。书中还讨论了各种非定常升力增强机制。
摘要。近几年,可再生能源 (RES) 进入了运输行业。在可以直接使用可再生能源供电的设备中,无人机 (UAV) 市场正在快速发展。在这种情况下,主要使用太阳能。光伏模块主要位于机翼上,因此通常需要使用效率低于平板光伏电池的柔性光伏电池。这项研究证明,从空气动力学的角度来看,通过部分扁平化来修改翼型几何形状是没有好处的。光伏板上较低的能量转换必须通过能量存储和能量管理系统来平衡。使用 TRNSYS 软件对安装在 AGH 太阳能飞机上的示范装置的性能进行了建模。获得的结果允许确定六个月内生产、储存和使用的能量量。
设计只能与其数学表示一样好。在工程设计优化中,所选的参数化方法可以对结果产生重大影响。本文介绍了一种利用变异自动编码器(VAE)的翼型设计参数化的新方法,这是一类以降低维数的熟练程度而闻名的神经网络。但是,VAE的重大挑战是编码潜在空间的解释性。这项工作旨在通过创建具有可解释潜在空间的网络来解决此问题,从而产生人类可以理解的参数。使用综合的UIUC机翼数据库评估了这种方法的有效性,该数据库提供了多种式机翼形状供分析。我们表明,VAE可以成功提取翼型几何形状的关键特征,并使用六个参数对其进行参数化,这些特征以设计器可以理解的方式显示与机翼属性的明显相关性。此外,它可以平滑地插入数据点,从而产生新的机翼,从而提供实用且可解释的机翼参数化。
1.1.1 描述以下标准并说明影响每个标准的因素:a. 马赫数 b.区分亚音速、跨音速和超音速飞行的近似马赫数 c. 临界马赫数 d. 马赫锥 e. 亚音速飞行 f. 超音速飞行 g. 跨音速飞行 h. 超音速气流特性 i.大气特性对声速的影响 j. 气动/动能加热 k. 面积律 l. 压缩性和压缩性冲击 m. 不可压缩性 n. 膨胀波 o.冲击引起的阻力 p. 冲击引起的失速 q.尾流湍流 r. 与边界层相关的气流 s. 压力扰动传播及其对超音速气流的影响 t. 压力扰动的近似速度 u.边界层及其对飞机空气动力学性能的影响 v. 翼型最大弯度点与弦长百分比的关系 w. 超音速气流通过发散管道
• 将机翼前缘向后掠,无论是后掠翼还是三角翼,并减小外翼部分的迎角,使其作用更像传统的尾翼稳定器。如果沿着外翼部分的翼展逐渐这样做,则称为翼尖后掠。机翼的外翼部分现在充当传统的尾翼,在平飞时,飞机应进行调整,使翼尖不产生任何升力:它们甚至可能需要提供一点下推力。这会降低机翼的整体效率,但对于许多设计(尤其是高速设计)而言,与传统稳定器相比,阻力、重量和成本的降低可以抵消这一影响。这种方法是由英国飞行员 JW Dunne 在 20 世纪初开发的,但直到喷气时代才得到广泛使用。自 Dunne 以来,这种方法通过使用低或零俯仰力矩翼型得到了增强,例如在 Horten 系列滑翔机和战斗机中看到的。
目录 目录 iv 图表列表 vi 表格列表 vii 合规矩阵 1 执行摘要 3 第 1 章简介 7 第 2 章详细任务概况 10 第 3 章概念评估和筛选过程 14 第 4 章总体飞机布局和重量分解 19 第 5 章子系统的详细设计 25 5.1 机身 ……………………………………………………………. 25 5.1.1 底部结构 …………………………………………... 25 5.1.2 尾梁 …………………………………………………... 26 5.1.3 内部布局 ……………………………………………… 26 5.2 驱动系统 ……………………………………………………….. 27 5.2.1 发动机配置 ……………………………………….. 27 5.2.2 变速箱配置 ………………………………… 27 5.3 结构集成 …………………………………………………….. 31 5.4 起落架 …………………………………………………………….. 32 5.4.1 配置 ………………………………………………... 32 5.4.2 轮胎尺寸 …………………………………………………… 33 5.4.3 油压尺寸 …………………………………………………… 34 5.5 主旋翼毂设计……………………………………….. 34 5.5.1 旋翼系统 ………………………………………………… 34 5.5.2 翼型选择 ……………………………………………… 35 5.6 斜盘控制系统 …………………………………………. 38 5.7 篮筐设计 ………………………………………………………... 40
介绍了一种有效计算复杂二维结构上湍流可压缩流的方法。该方法在整个流场中使用完全非结构化的网格,从而能够处理任意复杂的几何形状,并在粘性和非粘性流场区域使用自适应网格划分技术。网格生成基于局部映射 Delaunay 技术,以便在粘性区域生成具有高度拉伸元素的非结构化网格。使用有限元 Navier-Stokes 求解器对流动方程进行离散化,并使用非结构化多重网格算法实现快速收敛到稳态。湍流建模是使用一种廉价的代数模型进行的,该模型可用于非结构化和自适应网格。计算了多元素翼型几何的可压缩湍流解,并与实验数据进行了比较。作者
介绍了一种有效计算复杂二维结构上湍流可压缩流的方法。该方法在整个流场中使用完全非结构化的网格,从而能够处理任意复杂的几何形状,并在粘性和非粘性流场区域使用自适应网格划分技术。网格生成基于局部映射 Delaunay 技术,以便在粘性区域生成具有高度拉伸元素的非结构化网格。使用有限元 Navier-Stokes 求解器对流动方程进行离散化,并使用非结构化多重网格算法实现快速收敛到稳态。湍流建模是使用一种廉价的代数模型进行的,该模型可用于非结构化和自适应网格。计算了多元素翼型几何的可压缩湍流解,并与实验数据进行了比较。作者