使用硫化物固体电解质 (SE) 的全固态电池 (ASSB) 是下一代能源装置的有吸引力的候选者,其寿命比使用有机溶剂的液态锂离子电池 (LIB) 更长。众所周知,即使在干燥室等环境中,硫化物 SE 暴露在潮湿环境中也会导致离子电导率降低并产生有毒的硫化氢。然而,暴露在潮湿环境中对 ASSB 电池性能的影响迄今为止尚未完全阐明。为了填补这一知识空白,本文描述了水分对硫化物 SE 未暴露或暴露在露点为 -20°C 的干燥室模拟空气中的 ASSB 正极耐久性的影响的研究。在电池耐久性评估之后,对正极进行了飞行时间二次离子质谱 (ToF-SIMS) 测量,并利用暴露的 SE 观察了电池中的特征降解模式。
制氢技术子计划支持降低成本、提高效率和耐久性的技术研究、开发和示范 (RD&D),这些技术利用自然资源(包括水和有机物,如生物质或废物流),从各种清洁能源(如风能、太阳能、水电、地热或核能)中生产氢气。此子计划的活动支持氢能地球计划 (Hydrogen Shot) 的目标,即十年内每公斤清洁氢气 1 美元。子计划活动还与美国国家清洁氢气战略和路线图相一致,直接支持降低清洁氢气的成本,这是一项战略重点,是路线图中确定的所有优先事项的基础。该子计划还通过美国制造 H 奖:氢能孵化器(也称为氢能孵化器奖)激励开发有潜力实现氢能目标的创新路线图以外的技术。
• 自密实、高性能、超高强度、喷射和更耐火混凝土的测试; • 测定不同温度和湿度条件下材料的体积变化; • 测定建筑材料的物理和化学特性; • 综合测试新鲜复合材料的其他流变性能; • 测试隔热、隔音、扩散和其他物理性能; • 建议最佳利用二次和可再生原材料替代一次原材料,并开发新的建筑材料; • 模拟气候对建筑材料的影响并预测其使用寿命; • 监测不同温度负荷及其循环对建筑材料耐久性的影响; • 模拟各类化学腐蚀环境中建筑材料和组件的行为和耐久性; • 在认可的测试实验室对混凝土、粘合剂、骨料、灰泥和陶瓷产品进行全面的工程测试; • 对建筑材料进行诊断测试和评估(结构技术调查、专家意见); • 在测试炉和设备中进行实验,对建筑材料、组件和结构施加极端应力(确定其对火的反应、评估耐火性)。
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
钾离子电池 (PIB) 因其在地球上的广泛分布、潜在的价格优势以及钾的标准氧化还原电位低,作为锂离子电池 (LIB) 的有希望的替代品,可用于大规模电能存储系统 (EESS),引起了越来越多的关注。人们广泛寻求能够产生高比容量和高耐久性的用于 PIB 的开发材料,而新兴的合金型阳极材料研究为应对这一挑战提供了重要的前景。本文详细而系统地回顾了 PIB 的合金型阳极及其复合材料的最新进展,以捕捉从基本工作原理到重大进展和成就到未来前景和挑战的关键方面。重点放在关键方面,例如合金化机理和电极设计和结构工程的相关性对提高性能以及电解质相容性、添加剂和粘合剂的关键作用。通过评估该主题上所有重要贡献的评论,可以对研究挑战进行批判性评估,并为未来的研究方向提供见解,从而加速 PIB 作为可行电池储能系统的重要发展。
摘要:从材料和功能耐久性的角度研究并报告了热老化、疲劳和热机械老化对柔性微电子 12 器件的影响。研究了封装材料和基板的降解 13 机制。分析了封装材料和基板 14 材料的性能变化,并确定了它们在柔性器件失效机制中的关系。15 在热老化条件下,树脂的硬化与测试载体中的分层有关,这会导致功能性电气性能的丧失。降解是由于在 120°C 的热氧化过程中发生了突出的交联 17 反应。疲劳 18 应力测试后,树脂会发生适度硬化。虽然后者的硬化同样与交联反应有关,但在这里,硬化 19 不能由树脂的热降解引起,因为所用的应力频率很低。20 相反,热机械耦合发生在两个阶段。在温和条件下,降解 21 机制对应于热老化和疲劳过程的综合效应。在更严酷的热机械条件下,断链机制变得更加有效,并导致树脂软化 23。24
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
本文回顾了储能技术及其在澳大利亚国家电力市场 (NEM) 中的适用性。随着可再生能源发电渗透率随时间变化而不断提高,最大和最小运行需求之间的动态变化将继续增加。在这一持续的过渡期间,随着火力发电站的机械系统惯性随着不断退役而减小,推动 NEM 辅助服务市场进行频率和电压控制的恶劣天气事件变得越来越重要。因此,NEM 对能源服务的需求变得比以往任何时候都更加多样化。为了保持电网稳定,需要具有不同响应时间和耐久性的各种存储技术来提供电网辅助服务,例如频率控制辅助服务 (FCAS) 和网络服务控制辅助服务 (NSCAS)。对现有的短期至中期存储技术(如飞轮、电池和超级电容器)的审查表明,具有不同功率、能量密度和快速响应能力的混合系统将成为解决方案的一部分。抽水蓄能 (PHES)、压缩空气储能系统 (CAES) 和绿色氢能(通过燃料电池和快速响应的氢燃料燃气调峰涡轮机)将成为中长期储能的选择。电池和 SC 被认为是实现 2030 年至 2050 年净零排放目标的明智选择。重点介绍了当前的挑战以及未来研究的机会。
混凝土中氯离子的侵入通常用菲克扩散方程来表示,以实际估算混凝土结构的使用寿命。在日本土木工程协会制定的《混凝土结构标准规范》中,混凝土中钢筋部分的氯离子含量达到指定阈值的状态被定义为结构耐久性的极限状态之一 [1]。在 JSCE 方法中,表面氯离子含量被用作混凝土中氯离子扩散的边界条件。它是根据距离海岸线的距离经验确定的。扩散系数是根据混凝土的水灰比和水泥类型根据混凝土性质来估算的。之前的许多研究已经对表面氯离子和扩散系数进行了研究。通过快速氯离子渗透试验研究了混凝土的抗氯离子渗透性 [2]。非饱和混凝土表皮中的氯离子渗透与混凝土本体中的氯离子渗透不同 [3]。长期暴露在氯离子中,氯离子的扩散系数会降低 [4]。混凝土中氯离子的扩散系数是氯离子渗透混凝土的主要因素。本文研究了两种扩散系数模型,它们是根据风洞试验获得的混凝土中氯离子的分布情况实验得出的:平均扩散系数 D 和时间相关扩散系数 D ( t ) [5,6]。本文研究了强度之间的关系