摘要 目的:本文研究了一种耳周脑电图系统,作为传统头皮脑电图系统的替代方法,用于对听觉刺激引起的唤醒-效价域中的人类情感状态进行分类。方法:在情感状态分类任务的有效性方面,将从耳朵周围记录的脑电图与根据国际 10-20 系统收集的脑电图进行比较。本研究设计了一种具有八个干脑电图通道的可穿戴设备用于耳部脑电图采集。21 名受试者参加了一项为期三天、共六次的实验,使用耳朵和头皮脑电图采集方法。实验任务包括聆听听觉刺激并自我报告对所述刺激引起的情绪。各种特征与不对称方法结合使用,以评估使用耳朵脑电图信号与头皮脑电图相比的唤醒和效价状态的二元分类性能。主要结果。在受试者相关环境中,使用耳部脑电图信号训练多层极限学习机后,我们实现了唤醒 67.09% ± 6.14 的平均准确度和效价 66.61% ± 6.14 的平均准确度,而头皮脑电图方法实现了唤醒 68.59% ± 6.26 的平均准确度和效价 67.10% ± 4.99 的平均准确度。在受试者无关的环境中,耳部脑电图方法实现了唤醒 63.74% ± 3.84 的准确度和效价 64.32% ± 6.38 的准确度,而头皮脑电图方法实现了唤醒 64.67% ± 6.91 的准确度和效价 64.86% ± 5.95 的准确度。最佳结果表明,耳部脑电图和头皮脑电图信号在情感状态分类方面没有显著差异。意义重大。据我们所知,本文是第一篇探索耳部脑电图信号在情绪监测中的应用的论文。我们的研究结果证明了耳部脑电图系统在开发情绪监测装置方面的潜在用途,与传统的头皮脑电图装置相比,这种装置更适合用于日常情感生活日志系统。
如果您正在考虑使用耳塞或降噪耳机作为听力保护装置,请务必记住,降噪耳机和耳塞主要不是听力保护装置 (HPD)。HPD 是经 EPA 认可实验室认证的降噪产品。耳罩和耳塞等 HPD 可物理阻挡声音,而耳塞等降噪耳机则使用主动降噪技术来降低低频环境噪音。耳罩或耳塞的工作原理是在耳朵和外部噪音源之间建立物理屏障。相比之下,耳塞使用麦克风检测传入的声波并创建抵消原始声音的相反波形。
摘要 持续的压力会对人的身心健康产生负面影响。压力监测和管理是一个活跃的研究领域,目的是分析或减轻压力的影响。检测压力的一种有前途的方法是测量生物信号,例如脑电图 (EEG) 或心电图 (ECG)。在本研究中,我们介绍了一种可穿戴的入耳式和耳罩式设备,可同时测量 EEG 和 ECG 信号。该设备由干式和软式传感电极组成,它们共形集成在耳塞表面。我们进行了一项初步研究,让测试对象接触三种标准压力源(斯特鲁普、记忆搜索和心算),同时测量他们的 EEG 和 ECG 信号。初步结果表明使用卷积神经网络对各种压力条件进行分类的可行性。
• 安全预防措施 o 在 Cyclops 1 上或周围工作时,所有人员必须遵守所有现行安全法规和 Oceangate Inc. 健康与安全政策。提醒所有人员,在甲板上或在 Cyclops 1 周围工作时,他们应穿戴适当的 PPE,包括安全帽、安全靴、工作服、护目镜和耳罩以及救生衣(如适用)。o 所有人员均应遵守 Man-Aloft 规定。人员必须注意几个高能系统。这些包括电气、HP 空气和 HP 氧气系统。还有几项设备可以在没有警告的情况下自动移动;它们包括推进器、声纳和操纵器。在所有甲板驱动操作期间,一名飞行员将在 Cyclops 1 内,另一名团队成员将在潜水器外,以确保不会对潜在路人造成危险。
标本收集摊位AMCEN 3D打印面罩Amrel 3D打印面罩,耳罩,耦合和喷雾喷嘴:基于视觉的交通信息和分析人员的最佳位置和人员分配(OLAP)e-e-Treikes e-Trekes intelect:智能电动运输网络可用的市场上的企业及以上的企业及以上的企业兼容(重复使用),并将其重复使用,以重复使用,以重复使用,以重复使用,并将imbue培训计划阿里亚尔成人呼吸机移动AI热扫描仪LISA机器人:室内服务助理服务助理远处远处机器人机器人Pinoy动画Laban SA Covid-19与Toon City Academy(TCA)CLSU Nanotech氧化锌氧化锌氧化锌氧化(资源分配管理,分销和监测)由Tip-Dentsfortphil Spiritus Vitae自动紧急呼吸机:设计,开发和测试低成本呼吸机测试,校准和神经脱位系统DOST PCIEERD皮带项目
第 12 章 – 被剥夺自由的人员、战俘、留守人员、被拘禁者和被拘留者 ...................................................................................... 12–1 第 1 节 – 导言...................................................................................................................12–5 第 2 节 – 一般适用.........................................................................................................................12–6 第 3 节 – 对所有被剥夺自由或受新西兰国防军控制的人员的基本保护............................................................................. 12–11 第 4 节 – 敌对行动爆发时的职责....................................................................................12–16 第 5 节 – 从被捕时开始的职责....................................................................................12–21 第 6 节 – 审问和讯问....................................................................................................12–26 第 7 节 – 从战区撤离....................................................................................................12–29 第 8 节 – 蒙眼、耳罩和束缚............................................................................................12–31 第 9 节 – 身份认定和拘留理由..................................................................................... 12–33 第 10 节 – 关押被剥夺自由的人员............................................................................................... 12–39 第 11 节 – 将被剥夺自由的人员移交给其他部队或当局........................................................................................................12–61 第 12 节 – 针对战俘的具体规则.........................................................................................................................12–65 第 13 节 – 针对被拘留者的具体规则.....................................................................................................12–71 第 14 节 – 囚禁的结束....................................................................................................................12–73 第 15 节 – 新西兰国防军成员被剥夺自由时的权利和义务.........................................................................................12–77
可戴式计算领域的这些最新进展正在彻底改变我们与技术互动的方式,并扩大智能系统无缝集成到我们日常生活中的潜力。苹果于 2016 年推出了首款获得商业成功的 TWS 耳机 [ 2 ],并被誉为 TWS 市场的开创者。现在,支持 ANC 的耳机的份额正在飙升 [ 3 ]。ANC 耳机为可戴式计算带来了新的亮点。ANC 耳机在耳罩内放置一个反馈麦克风,以感应用户听到的环境噪音。由于这个麦克风听到的噪音与人听到的噪音相似,因此 ANC 电路可以在将结果信号发送到耳机扬声器之前产生抗噪效果。为了改善降噪效果,ANC 耳机进一步利用耳罩外部的前馈麦克风与反馈麦克风协同工作以扩展 ANC 带宽。反馈和前馈麦克风为许多传感应用开辟了新的机遇。例如,当耳机与人耳紧密密封时,就会产生耦合效应 [10],大大放大耳道中的低频声音。因此,许多可听设备的健康功能可以通过用反馈麦克风被动记录通过耳道传播的身体引起的振动来实现。这一想法在学术界得到了广泛的利用,引发了许多令人兴奋的移动应用,包括心率感应、耳部疾病诊断、呼吸感应、身体活动识别等 [11, 12, 15, 18]。除了上述感知耳戴设备的好处之外,耦合效应是入耳式耳塞可以为音乐播放产生足够的低音响应的根本原因。然而,这种耦合效应是可听设备的致命弱点,它放大了本来就过多的低频声音,例如由于身体运动和风引起的声音,使自己的讲话听起来不自然。当 ANC 电路拾取环境中放大的低频噪声时,这种低频噪声会使麦克风饱和,显著降低目标信号的动态范围,产生可听见的伪影,并使 ANC 电路变得不稳定。不幸的是,低频噪声会损害 ANC 性能,影响音频质量,甚至使 ANC 耳塞产生高音调的啸叫噪声。在本文中,我们将描述 ANC 耳机中常用的解决此问题的解决方案如何影响使用 ANC 麦克风子系统的可听式传感系统。需要指出的是,行业中用于调解这些影响以优化 ANC 性能、透明模式性能和语音拾取的解决方案可能会对社区提出的许多算法产生负面影响。过去,这些算法从未向可听式计算社区透露过。此外,经常被耳塞社区忽视,
目的:由于实际、方法和分析方面的考虑,婴儿期功能性磁共振成像 (fMRI) 面临挑战。本研究旨在实施一种与硬件相关的方法来提高清醒婴儿 fMRI 的受试者依从性。为此,我们设计、构建并评估了一个自适应的 32 通道阵列线圈。方法:为了能够使用紧密贴合的头部阵列线圈对 1-18 个月大的婴儿进行成像,开发了一种可调节头部线圈概念。线圈设置方便半坐式扫描姿势,以提高婴儿的整体扫描依从性。耳罩隔间直接集成在线圈外壳中,以便在使用声音保护时不会失去线圈在婴儿头部的紧密贴合。使用基准级指标、信噪比 (SNR) 性能和加速成像能力,根据模型数据对构建的阵列线圈进行评估,以用于平面和同步多层 (SMS) 重建方法。此外,还获取了初步的 fMRI 数据以评估体内线圈的性能。结果:与市售的 32 通道头部线圈相比,模型数据显示 SNR 平均增加了 2.7 倍。在婴儿头部模型的中心和外围区域,测得的 SNR 增益分别为 1.25 倍和 3 倍。婴儿线圈还显示出对欠采样 k 空间重建方法和 SMS 技术的良好编码能力。
在精确的牲畜种植中,牛的个体识别对于为赋予动物福利,健康和生产力做出的决定提供了至关重要的。在文字中,存在可以读取耳罩的模型;但是,它们不容易携带到现实世界中的牛生产环境,并主要在静止图像上做出预测。我们提出了一个基于视频的牛耳牌阅读系统,称为deRmycow,该系统利用视频中的节奏特性来准确检测,跟踪和读取边缘设备上25 fps的牛耳标。对于视频中的每个帧,ReDmycow在两个步骤中发挥作用。1)标签检测:Yolov5s对象检测模型和NVIDIA DEEPSTREAM跟踪层检测并跟踪存在的标签。2)标签读数:小说whentoread mod-ule决定是读取每个标签,使用trba场景文本识别模型或使用从前框架上读取的读数。该系统是在边缘设备上实现的,即NVIDIA JETSON AGX ORIN或XAVIER,使其可移植到没有外部计算资源的牛生产环境中。要达到实时速度,请阅读 - MyCow仅在当前框架中读取检测到的标签,如果它认为在当前框架中明显改善决策时,它将获得更好的读数。理想情况下,这意味着即使标签被遮挡或模糊,也可以在视频中找到标签的最佳读数并存储在视频中。在真正的中西部奶牛场住房测试该系统时,9,000头母牛,雷米科(Demmycow)系统准确地阅读了96.1%的印刷耳廓,并证明了其现实世界中的商业潜力。devmycow为商业牛农场提供了知情的数据驱动决策流程的机会。