摘要:支持 EEG 的耳塞代表着超越传统实验室测试的脑活动监测领域的一个有前途的前沿。它们的离散外形和与大脑的接近度使它们成为第一代离散非侵入式脑机接口 (BCI) 的理想候选。然而,这项新技术需要全面的特性描述,才能被广泛用于消费者和健康相关领域。为了满足这一需求,我们开发了一个验证工具包,旨在促进和扩大对耳-EEG 设备的评估。该工具包的第一个组件是一个桌面应用程序(“EaR-P Lab”),它控制几个 EEG 验证范例。此应用程序使用实验室流层 (LSL) 协议,使其与大多数当前 EEG 系统兼容。该工具包的第二个元素将幻影评估概念的改编引入了耳-EEG 领域。具体而言,它利用测试对象耳朵的 3D 扫描来模拟耳朵周围和内部的典型 EEG 活动,从而可以对不同的耳-EEG 外形和传感器配置进行受控评估。每种 EEG 范例都使用湿电极耳部 EEG 记录进行验证,并与头皮 EEG 测量结果进行对比。耳部 EEG 模型成功获取了硬件特性的性能指标,揭示了基于电极位置的性能差异。此信息用于优化电极参考配置,从而提高了听觉稳态响应 (ASSR) 功率。通过这项工作,我们开发了耳部 EEG 评估工具包,旨在促进对新型耳部 EEG 设备从硬件到神经信号采集的系统评估。
标题:使用耳脑电图 (cEEGrids) 记录大脑活动 作者及所属机构:Daniel Hölle、Martin G. Bleichner 日常生活神经生理学组,德国奥尔登堡大学心理学系 视频:https://uol.de/en/psychology/neurophysiology/resources/ceegrid-video-tutorial 摘要:cEEGrid(耳脑电图)可以长时间记录实验室内外的大脑活动。在此协议中,我们描述了如何设置和使用 cEEGrids 进行记录。 摘要:cEEGrid(耳脑电图;耳脑电图)是一种不显眼且舒适的电极阵列,固定在耳朵周围。它适合长时间研究实验室外的大脑活动。先前的研究表明,cEEGrid 可用于研究实验室内外的各种认知过程,甚至可以研究一整天。要记录高质量的耳部脑电图数据,必须进行精心准备。在此协议中,我们解释了成功使用 cEEGrids 进行实验所需的步骤:首先,我们展示了如何在记录之前测试 cEEGrid 的功能。其次,我们描述了如何准备参与者并安装 cEEGrid,这是记录高质量数据的最重要步骤。第三,我们概述了如何将 cEEGrids 连接到放大器以及如何检查信号质量。在此协议中,我们提供了最佳实践建议和技巧,使 cEEGrid 记录更容易。如果研究人员遵循此协议,他们就完全有能力在实验室内外使用 cEEGrid 进行实验。简介:使用移动耳脑电图 (EEG),可以在日常生活中记录大脑活动,并获得对实验室以外的神经处理的新见解 1 。为了适合日常生活,移动耳脑电图系统应该是透明的:不引人注目、易于使用、运动耐受性好,即使佩戴几个小时也舒适 2 。 cEEGrid 是一种 C 形耳脑电图系统,旨在满足这些要求,以最大限度地减少对自然行为的干扰。cEEGrid 由十个印在柔性印刷材料上的 Ag/AgCl 电极组成 3 。结合微型移动放大器和用于数据采集的智能手机 4、5,cEEGrid 可用于长时间收集耳脑电图 1 。有许多神经过程可以通过耳朵周围的电极记录 6、7 。实验室进行的几项研究表明 cEEGrid 在研究这些过程方面的潜力。它已成功用于听觉注意力解码,准确度高于偶然水平 8-12 。Segaert 及其同事 13 使用 cEEGrids 量化
筛查耳部疾病的远程医疗服务依赖于预先录制的视频耳镜图像,这些图像被传输用于远程诊断 (5)。人工智能 (AI) 算法有可能根据这些图像中包含的信息来预测耳部疾病。之前曾报道过类似的 AI 应用,用于成功检测耳部疾病 (6,7)。然而,AI 具有高度的环境特异性,迄今为止还没有研究专门针对土著儿童的耳部疾病筛查和诊断。因此,本研究的目的是建立概念验证,证明在针对土著儿童的远程医疗耳部筛查服务中使用 AI 检测耳部疾病的可行性和效果。我们根据 TREND 报告清单 (可在 https://dx.doi.org/10.21037/ajo-21-14 上获得) 提出以下文章。
1 瑞士苏黎世大学医院 (USZ) 耳鼻咽喉头颈外科系内耳干细胞实验室 2 瑞士苏黎世大学 (UZH) 3 瑞士苏黎世功能基因组学中心(苏黎世联邦理工学院和苏黎世大学) 4 瑞士伯尔尼大学生物医学研究系再生神经科学项目 5 美国马萨诸塞州波士顿马萨诸塞眼耳医院 6 美国马萨诸塞州波士顿哈佛医学院 7 美国马萨诸塞州剑桥哈佛干细胞研究所 8 荷兰莱顿大学医学中心耳鼻咽喉和头颈外科系莱顿耳生物学 9 荷兰莱顿大学医学中心诺和诺德基金会干细胞医学中心 (reNEW) 10 美国马萨诸塞州波士顿波士顿儿童医院耳鼻咽喉科 11 波士顿儿童医院 FM 柯比神经生物学中心美国马萨诸塞州波士顿 12 波士顿儿童医院整形与口腔外科部;美国马萨诸塞州波士顿
摘要 — 近年来,实用化的脑机接口正在积极开展,尤其是在移动环境中。然而,当用户移动时,脑电图 (EEG) 信号会受到运动伪影和肌电图信号的干扰,从而难以识别人的意图。此外,由于硬件问题也具有挑战性,耳部脑电图已被开发用于实用的脑机接口并得到广泛应用。在本文中,我们提出了基于集成的卷积神经网络在移动环境中的应用,并从统计分析和脑机接口性能方面分析了头皮和耳部脑电图中的视觉事件相关电位响应。当以 1.6 m/s 的速度快速行走时,脑机接口性能会下降 3–14%。所提出的方法显示曲线下面积的平均为 0.728。所提出的方法对移动环境和不平衡数据也表现出很强的鲁棒性。索引词 — 脑机接口、移动环境、耳部脑电图、事件相关电位、集成 CNN
结果与讨论:结果显示,两种任务的频谱特征在认知负荷水平之间存在统计学差异。对帽子和耳部脑电图的十二个和两个选定通道的频谱特征进行了分类算法测试。双通道耳部脑电图模型专门评估了两个干式入耳电极的性能。两项任务的单次试验分类显示所有受试者的准确率均高于机会水平,平均准确率为:十二通道模型为 96%(帽子脑电图)和 95%(耳部脑电图),N-back 任务的双通道模型为 76%(帽子脑电图)和 74%(入耳脑电图);十二通道为 82%(帽子脑电图)和 85%(耳部脑电图),双通道模型为 70%(帽子脑电图)和 69%(入耳脑电图)。这些结果表明,用耳脑电图记录的神经振荡可用于可靠地区分认知工作量和工作记忆的水平,特别是在有多通道记录可用时,并且可以在不久的将来集成到可穿戴设备中。
摘要 目的:本文研究了一种耳周脑电图系统,作为传统头皮脑电图系统的替代方法,用于对听觉刺激引起的唤醒-效价域中的人类情感状态进行分类。方法:在情感状态分类任务的有效性方面,将从耳朵周围记录的脑电图与根据国际 10-20 系统收集的脑电图进行比较。本研究设计了一种具有八个干脑电图通道的可穿戴设备用于耳部脑电图采集。21 名受试者参加了一项为期三天、共六次的实验,使用耳朵和头皮脑电图采集方法。实验任务包括聆听听觉刺激并自我报告对所述刺激引起的情绪。各种特征与不对称方法结合使用,以评估使用耳朵脑电图信号与头皮脑电图相比的唤醒和效价状态的二元分类性能。主要结果。在受试者相关环境中,使用耳部脑电图信号训练多层极限学习机后,我们实现了唤醒 67.09% ± 6.14 的平均准确度和效价 66.61% ± 6.14 的平均准确度,而头皮脑电图方法实现了唤醒 68.59% ± 6.26 的平均准确度和效价 67.10% ± 4.99 的平均准确度。在受试者无关的环境中,耳部脑电图方法实现了唤醒 63.74% ± 3.84 的准确度和效价 64.32% ± 6.38 的准确度,而头皮脑电图方法实现了唤醒 64.67% ± 6.91 的准确度和效价 64.86% ± 5.95 的准确度。最佳结果表明,耳部脑电图和头皮脑电图信号在情感状态分类方面没有显著差异。意义重大。据我们所知,本文是第一篇探索耳部脑电图信号在情绪监测中的应用的论文。我们的研究结果证明了耳部脑电图系统在开发情绪监测装置方面的潜在用途,与传统的头皮脑电图装置相比,这种装置更适合用于日常情感生活日志系统。
摘要 — 目的:传感器小型化和计算能力的进步为在现实场景中监测人类生理状况提供了支持技术。睡眠中断可能会影响神经功能,也可能是身体和精神疾病的症状。本研究提出使用可穿戴入耳式脑电图 (ear-EEG) 进行整夜睡眠监测,作为一种 24/7 连续、不引人注目的社区睡眠质量评估技术。方法:共有 22 名健康参与者参加了整夜睡眠监测,同时进行耳部脑电图和常规全多导睡眠图记录。在结构复杂性和频谱域中分析了耳部脑电图数据。提取的特征用于通过监督机器学习自动预测睡眠阶段,其中 PSG 数据由睡眠临床医生手动评分。结果:基于单个入耳式传感器的耳部脑电图自动预测睡眠阶段与基于完整 PSG 的睡眠图之间的一致性在五个睡眠阶段分类的准确度上为 74.1%。这得到了 kappa 度量 (0.61) 的高度一致性的支持。结论:入耳式传感器可用于在睡眠实验室外监测整夜睡眠,还可减轻与 PSG 相关的技术困难。因此,它代表了一种 24/7 连续可穿戴的替代品,可以替代传统笨重且昂贵的睡眠监测。意义:“标准化”的通用粘弹性入耳式传感器是监测睡眠的下一代解决方案——该技术有望成为一种可行的可随时穿戴的睡眠监测方法,是实现负担得起的医疗保健和未来电子健康的关键。
什么是肺炎球菌病?肺炎球菌病是由肺炎链球菌引起的。这些细菌导致 40-60% 的耳部感染,是儿童反复耳部感染的最常见原因。肺炎球菌病还会引起严重感染,如脑膜炎(脑或脊髓内膜感染)和肺炎(肺部感染),这可能会导致严重的长期影响,如耳聋和脑损伤,甚至死亡。这些感染被称为侵袭性肺炎球菌病 (IPD)。这种疾病是如何传播的?肺炎球菌病通过呼吸道从感染者传播给另一个人,包括接吻、咳嗽、打喷嚏、分享食物或饮料或处理纸巾等脏物品。如何预防这种疾病?免疫接种是防止疾病传播的最佳保护方法之一。身体不适时待在家里也可以防止疾病传播。有哪些肺炎球菌疫苗可用?目前有两种类型的肺炎球菌疫苗可用: