在含有机污染物的废水(例如下水道或工厂废水)的处理中,为了满足再利用水、满足更严格的出水水质规定或满足场地限制等要求,膜生物反应器(MBR* 1 )已得到实际应用。MBR 是将节省空间且可确保高质量处理水的膜分离与传统的生物处理相结合。此前,住友电气工业株式会社已将利用其专有技术开发的聚四氟乙烯 (PTFE) 复合中空纤维膜制成的水处理膜商业化。我们开发了一种比传统产品更节能、更节省空间的膜模块单元产品。本文特别介绍了该产品的规格、性能和应用实例。
技术数据压差滤芯更换:2.5 bar @ 25 °C 最大。最大允许压力:5.0 bar @ 25 °C 3.0 bar @ 300 °C(玻璃纤维) 构造材料 滤材: - 聚丙烯 - 棉 - 玻璃纤维 - 尼龙 - 涤纶 - 粘胶 内芯: - 聚丙烯 - 不锈钢 - 镀锡钢 - 尼龙 - 涤纶 垫片: - 丁腈橡胶 - 三元乙丙橡胶 - 氟橡胶 - 硅胶 - 聚四氟乙烯(仅 DOE) 尺寸 外径:2.5” (63 毫米) 内径:1” (26 毫米) 长度:10”、20”、30”、40”、50”、60”、80” 过滤面积 10”:0.05 平方米 20”:0.10 平方米 30”:0.15 平方米 40”:0.20 平方米 50”:0.25 米60”: 0.30 米 70”: 0.35 米 80”: 0.40 米
摘要 近年来,二次金属空气电池作为与可再生能源相结合的储能技术,受到了广泛关注。传统气体扩散电极中碳的氧化缩短了二次金属空气电池的寿命。用沸石代替碳基材料是解决这一问题的可能解决方案,这也是本文的目的。沸石是一种天然或合成的多孔材料,可提供必要的气体渗透性。通过按照专门开发的程序将沸石与适量的聚四氟乙烯混合,可确保电极具有所需的疏水性。实验是在自制的测试电池中进行的,该测试电池可确保在半电池和全电池配置中进行测量。在本研究中,测试是在带有氢参比电极的 3 电极自制半电池配置中进行的。电池分别在充电/放电电流 ±2 mA cm -2 下进行循环。所得结果表明,在气体扩散层中用沸石代替碳是优化气体扩散电极的一个有希望的方向。
摘要:红外量子吸收光谱是量子传感技术之一,通过可见光或近红外光子检测可估算样品的红外光学特性,无需红外光源或探测器,这一直是提高灵敏度和光谱仪小型化的障碍。然而,实验演示仅限于波长短于 5 µ m 或太赫兹区域,而尚未在通常用于识别化合物或分子的 1500–500 cm − 1(6.6 至 20 µ m)的所谓指纹区域实现。本文我们报告了指纹区域量子傅里叶变换红外 (QFTIR) 光谱的实验演示,通过该实验可以从用单像素可见光探测器获得的傅里叶变换量子干涉图中获得吸收光谱和相位光谱(复杂光谱)。作为演示,我们获得了硅晶片在 10 µ m (1000 cm − 1 ) 左右的透射光谱,以及合成氟聚合物片聚四氟乙烯在 8 至 10.5 µ m (1250 至 950 cm − 1 ) 波长范围内的复杂透射光谱,其中可以清楚地观察到由于 CF 键的拉伸模式而产生的吸收。这些结果为基于量子技术的新型光谱装置开辟了道路。
永磁材料 声学匹配场处理 脉冲 X 射线照相术 氮化镓晶体管开发 经济性和可持续性 伽马射线照相术 断裂力学原理 分子结构分析和诺贝尔奖 合成润滑剂 海军用聚四氟乙烯 定量 X 射线荧光分析 改进的锅炉水处理 断裂试验技术 半绝缘砷化镓晶体 离子注入冶金术 氟化网络聚合物 磁性材料和半导体技术 低太阳吸光度船用涂料 快速固化防腐涂料 顶部伪装和防滑甲板涂料 高温防滑甲板 空间研究与技术 首次探测到太阳的远紫外光谱 首次探测到来自太阳的 X 射线 维京探空火箭计划 先锋计划 — 火箭先锋计划 — Minitrack 和空间监视先锋计划 — 卫星和科学 X 射线天文学太阳辐射 (SOLRAD) I 美国第一颗作战情报卫星 TIMATION 和 NAVSTAR GPS 高层大气遥感星载太阳日冕仪海事领域意识深空计划科学实验 (Clementine) 光波长干涉测量战术卫星自主系统龙眼无人系统氢燃料电池
摘要:随着科技的不断进步,用于增强现实(AR)和虚拟现实(VR)的电子产品逐渐进入大众的视野,这些电子设备的电源也受到了科学家的更多关注。与传统电源相比,摩擦纳米发电机(TENG)由于体积小、转换效率高、能耗低等优点,逐渐被用于可穿戴柔性电子产品,包括AR和VR设备等自供电传感技术中的能量收集,是AR和VR产品中最受欢迎的电源。本文首先概括了TENG的工作方式和基本理论,然后回顾了AR和VR设备中使用的TENG模块,最后总结了TENG制备的材料选择和设计方法。TENG的摩擦层可以由聚合物、金属和无机材料等多种材料制成,其中聚四氟乙烯(PTFE)和聚二甲基硅氧烷(PDMS)是最受欢迎的材料。要提高TENG的性能,必须选用合适的摩擦层材料。因此,针对不同的应用场景,TENG的设计方法对其性能起着重要作用,合理的制备材料和设计方法的选择可以大大提高TENG的工作效率。最后,总结了纳米发电机的研究现状,分析并提出了未来的应用领域,并总结了材料选择的要点。
苯乙烯-马来酸酐共聚物 (SMA) 聚酰胺 (PA) (热塑性) 聚氨酯 (PU R) 热塑性聚酯 聚对苯二甲酸丁二醇酯 (PBT) 聚对苯二甲酸乙二醇酯 (PET) 聚对苯二甲酸丙二醇酯 (PTT) 聚萘二甲酸乙二醇酯 (PEN) 液晶聚合物 (LCP) 聚缩醛 (POM) 聚苯醚 (PPE) 热塑性弹性体 (TPE) 热塑性聚烯烃弹性体 (TPE-O) 热塑性聚烯烃硫化橡胶 (TPE-V) 热塑性聚酯弹性体 (TPE-E) 苯乙烯嵌段共聚物 (TPE-S) 热塑性共聚酰胺弹性体 (TPE-A) 热塑性聚氨酯 (TPE-U) 3.1.10 含氟聚合物 聚四氟乙烯 (PTFE) 聚偏氟乙烯 (PVD F) ETFE 聚乙烯氯三氟乙烯 (EC FTE) THV 3.1.11 其他热塑性塑料 脂肪族聚酮 热固性树脂 3.2.1 不饱和聚酯 (UP 树脂) 3.2.2 酚醛树脂 - 苯酚甲醛聚合物 (PF) 3.2.3 环氧树脂 3.2.4 (热固性)聚氨酯 (PUR) 3.2.5 其他热固性塑料 增强材料 3.3.1 玻璃纤维和玻璃毡 玻璃增强热塑性塑料 R-RIM 和 S-RIM 3.3.2 其他纤维 天然纤维 芳族聚酰胺纤维 碳纤维 金属纤维 颗粒增强材料 纳米复合材料
ML7.a “生物制剂”或放射性物质,经选择或改造,可提高其对人类或动物造成伤害、损坏设备或破坏农作物或环境的效力。ML7.e 为军事用途而专门设计或改造的设备、为传播上述任何 ML7 条目而设计或改造的设备,以及为其专门设计的部件。ML8 “高能材料”和相关物质,已“分类”。ML8.a.4 CL-20(HNIW 或六硝基六氮杂异伍兹烷)(CAS 135285-90-4)。ML8.a.13.a HMX(环四亚甲基四硝胺、八氢-1,3,5,7-四硝基-1,3,5,7-四嗪、1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷、奥克托今或奥克托今)(CAS 2691-41-0)。ML8.a.21.a RDX(环三亚甲基三硝胺、cyclonite、T4、六氢-1,3,5-三硝基-1,3,5-三嗪、1,3,5-三硝基-1,3,5-三氮杂环己烷、黑索今或黑索今)(CAS 121-82-4)。ML8.b.5 复合和复合改性双基推进剂。ML8.c.3 硼烷。ML8.c.10 液态高能量密度燃料。ML8.c.5.a.1 铍(CAS 7440-41-7),颗粒大小小于 60 µm。ML8.c.7 与粉末金属或其他高能量燃料成分复合的高氯酸盐、氯酸盐和铬酸盐。ML8.c.11.b 镁、聚四氟乙烯 (PTFE) 和偏二氟乙烯-六氟丙烯共聚物(例如 MTV)的混合物。ML8.d 以下氧化剂及其“混合物”:
描述 GORE® EXCLUDER® 可适形 AAA 内假体 GORE® EXCLUDER® 可适形 AAA 内假体 (EXCC) 可用于肾下腹主动脉瘤 (AAA) 的血管内治疗。GORE® EXCLUDER® 可适形 AAA 内假体是一个多组件系统,包括躯干同侧腿内假体、对侧腿内假体、用于近端延伸的主动脉延长器内假体和用于远端延伸的髂骨延长器内假体。每个组件的移植物材料均为膨体聚四氟乙烯 (ePTFE) 和氟化乙烯丙烯 (FEP),由沿其外表面的镍钛诺 (镍钛合金) 丝支撑。镍钛合金锚固件和 ePTFE/FEP 密封套位于主干前端(近端)(图 1A、1B 和 1C),密封套位于主动脉扩展器的前端(近端)(图 4)。所有组件均带有金色不透射线标记,便于观察(图 1、2、4 和 6A)。ePTFE/FEP 套管用于将内置假体限制在输送导管上(图 3A、3B、3C、3D 和 5A)。GORE® EXCLUDER® 可适形 AAA 内置假体的所有组件均采用低渗透性设计,这是唯一可用的设计。GORE® EXCLUDER® 可适形 AAA 内置假体的每个组件如下所述。
尽管水蒸气吸附于固体自由表面会引起接触角的变化,但对水蒸气影响的研究却很少。1942年Boyd和Livingston[2]以及2007年Ward和Wu[3]指出,水蒸气在自由固体表面的吸附应该会改变接触角,因为γSV会降低。1988年,Yekta-Fard和Ponter[4]测量了当水滴在聚四氟乙烯表面上暴露于环己烷、癸烷或十一烷蒸气时,水的接触角没有变化。几位作者[5]研究了由于吸附有机蒸气引起的水的表面张力的变化。在许多自然现象和工业应用中,水滴在表面的滑动都很重要,例如涂层[6]、能量转换[7]和水收集[8],或者雨中的玻璃或挡风玻璃。在这些情况下,需要区分前进接触角θ a 和后退接触角θ r 。两者之间的差异称为接触角滞后。它可能是由表面异质性、粗糙度或适应性引起的。[9] 接触角滞后很重要,因为它决定了固着液滴的摩擦力:F=kγLVw(cosθr−cosθa)。[2,10] 其中,k≈1 是形状因子,w 是液滴与固体表面接触面积的宽度。尽管取得了令人瞩目的发展,但液滴在表面上的移动机制还远未被理解或控制。在这方面,涂有聚二甲基硅氧烷(PDMS)刷的表面由于其低接触角滞后性而引起了极大兴趣。 [11] 在最近的一篇论文中,我们证明了当系统暴露于甲苯蒸汽时,PDMS 涂层表面上水滴的接触角滞后会进一步减小。[12] 我们通过蒸汽被吸附在 PDMS 层中的润滑作用解释了这种影响。原子力显微镜检测到甲苯蒸汽层厚度增加,支持了这一假设。聚合物刷吸附溶剂蒸汽确实是已知的。[13]