摘要:与传统注塑工艺相比,基于挤压的聚合物复合磁体的增材制造可以增加固体负载体积分数,并通过打印喷嘴产生更大的机械力。约 63 vol% 的各向同性 NdFeB 磁体粉末与 37 vol% 的聚苯硫醚混合,并在使用大面积增材制造时制造粘结永磁体,而磁性能没有任何下降。聚苯硫醚粘结磁体的拉伸应力为 20 MPa,几乎是尼龙粘结永磁体的两倍。增材制造和表面保护树脂涂层粘结磁体满足高达 175 ◦ C 的工业稳定性标准,1000 小时内的通量损失为 2.35%。与无涂层磁体相比,它们在酸性溶液(pH = 1.35)中暴露 24 小时并在 80 ◦ C 下退火 100 小时(相对湿度为 95%)时也表现出更好的耐腐蚀行为。因此,聚苯硫醚粘合、增材制造、保护性树脂涂层粘合永磁体具有更好的热性能、机械性能和磁性。
活化的碳(AC)可以添加到聚合物基质中以实现电导率,从而导致潜在的传感器应用。在这项研究中,我们评估了与聚苯二甲酸酯(PBT)/聚酰胺6(PA6)混合物混合时AC的拉伸强度。PBT/ PA6/ AC复合材料是通过0、2、4、6、8和10%AC的注射成型制备的。在国际标准化组织527标准组织之后,对样品进行了拉伸测试。PBT/PA6/2%AC,PBT/PA6/4%AC,PBT/PA6/6%AC和PBT/PA6/8%AC样品的拉伸强度分别为45.13、44.60、42.48和41.82 MPA。这些值高于没有AC的PBT/PA6混合物的(40.93 MPa)。将AC掺入PBT/PA6混合物中会增加拉伸强度。PBT/PA6/2%AC样品具有最高的拉伸强度,而PBT/PA6/10%AC样品的拉伸强度比PBT/PA6混合物低39.79 MPa。所有PBT/PA6/AC样品的拉伸模量高于PBT/PA6混合物。将AC添加到PBT/PA6混合物中时,微结构变得更小,更细,增强了凝聚力并改善机械性能。这项工作中分析的方法的可疑应用领域是,PBT/PA6混合物可以用少量AC回收为导电聚合物复合材料。
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
电池浸没在搅拌恒温水浴中,在实验过程中,水浴温度以 5 ø 为间隔从 5 ø 变化到 30øC。氮气供应通过浸没在水浴中的玻璃烧结起泡器,以在进入电池之前使其充满水蒸气。使用放置在靠近电池中心的井中的热电偶传感器监测电池的温度。DMS 通过一个装有液态 DMS(纯度 >99%,Aldrich,威斯康星州密尔沃基)的小玻璃球进入室 1。因此,电池这一侧的浓度相对于纯 DMS 略微不饱和。对于甲烷运行,移除玻璃球,将纯气体(纯度 99.0%,Liquid Carbonic,伊利诺伊州芝加哥)引入鼓泡器代替氮气。在实验过程中,膜的高浓度侧和低浓度侧分别使用 10 cm3 min- • 和 20 cm3 min- • 的气体流速。
在先进塑料领域,尽管页岩油气压裂工艺中使用的聚苯硫醚(PPS)和聚乙醇酸(PGA)产品销售额增加,但用作锂离子二次电池粘合剂材料的聚偏氟乙烯(PVDF)和其他加工塑料产品销售额下降,导致收入和营业利润下降。在碳产品领域,高温炉隔热材料的销售额增加,导致该业务的销售额和营业利润增加。因此,先进材料部门的收入同比下降 22.0% 至 645.10 亿日元,营业利润同比下降 52.3% 至 48.37 亿日元。
可以克服并模拟数千原子的系统,以获取纳秒级的时间尺度。的确,MLP允许以第一条原理方法成本的一小部分进行从头启动 - 质量的MD模拟。在这种方法中,按照Behler和Parrinello率先提出的策略,36通过神经网络(NN)对原子间的相互作用进行建模,该神经网络(NN)经过训练,可以忠实地预测一套参考文献con的dft计算获得的能量和力量。为了进行反应性过程的准确性,因此,最重要的是,训练数据集不仅包含来自亚稳态状态的采样的低能量结构,而且还包括跨性别状态的情况。不幸的是,对于复杂的系统(例如液体硫),由于存在大型自由能屏障,大多数反应性事件都是在时间尺度上发生的,远远超过了在标准MD模拟中可访问的,因此无法采样。幸运的是,ES方法旨在克服这一限制,并允许在可行的计算时间中对罕见事件进行采样。许多这样的方法基于
近年来,由于能源短缺和环境污染,低成本,高能量密度和环保特征的锂硫电池(LSB)引起了广泛的关注。然而,由锂多硫化物(Lips)引起的班车效应大大降低了LSB的cy效和寿命。为了解决此问题,我们通过一步热液方法设计了一个CO 3 O 4 -RGO复合材料,该方法用于修改聚丙烯(PP)分离器。CO 3 O 4 -RGO复合材料具有较高的电子电导率和吸附性能,可提供电子传输的通道并有效抑制嘴唇的班车。用CO 3 O 4 -RGO-PP分离器组装的锂硫电池具有令人满意的特定能力。在0.1 c时,第一个散落能力达到1365.8 mAh·g -1,并且在100个周期后,放电能力保持在1243.9 mAh·g -1。在0.5°C时350个循环后,放电能力为1073.9 mAh·g -1,每个周期的平均容量衰减率为0.0338%。这些结果表明CO 3 O 4 -RGO- PP分离器将在高性能LSB中具有良好的应用前景。
微生物,动物和植物中的代谢途径表现出各种关系。基于微生物硫代谢,本文总结了微生物,动物和植物中硫的四个主要代谢途径,并强调了相似性,差异和关系。微生物是生物硫循环的主要驱动力,参与硫的所有主要代谢途径。微生物通过微生物减少了硫磺硫,可减少甲烷在环境中的挥发。微生物或植物的同化硫还原性的动物有机硫来源,而动植物则缺乏异化或同化硫还原的功能。硫氧化发生在所有三种生物体中,具有相似的途径,其中硫转移酶多样化氧化产物。植物中的硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。 在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。
• 唯一双导向(顶部和底部)托盘,可实现更平稳的阀门行程,减少颤振和阀门磨损。 • 阀座和托盘采用先进的复合热塑性材料聚苯硫醚 (PPS),具有出色的耐腐蚀、耐化学腐蚀、耐液体和蒸汽粘附、耐极端温度(-50 至 500°F)以及耐阀座冻结粘连性能。 • 托盘和阀座组件完全可现场更换,无需特殊工具或复杂程序,无需派人进行重建或更换整个阀门(可由内部维护人员进行维护)。 *还提供弹簧加载设计(Enardo 962)。