Crystic®解决方案TBC010 TBC010在苯乙烯溶液中TBC010介绍Crystic®解决方案TBC010是苯乙烯中T丁基儿茶酚抑制剂的溶液。添加Crystic®解决方案TBC010将减慢所有聚酯树脂系统的geltime。对于乙烯基酯,将发现丙酮更合适。加长的延长将取决于树脂类型,以及树脂中已经包含的加速器和其他抑制剂的水平。通常,0.05%足以使通用原则的直智聚酯树脂的盖尔特倍增。我们建议用户在给大量树脂给药之前,在小样本上进行自己的测试。应用Crystic®溶液TBC010可以添加到树脂,胶衣和其他聚酯树脂中,以减慢GELTIME。配方晶体®解决方案TBC010应在使用前达到车间温度(18ºC-30ºC)。以0.05%-0.2%的水平将Crystic®溶液TBC010添加到树脂中。使用机械搅拌器剧烈搅拌至少10分钟。建议将已通过Crystic®溶液TBC010处理的树脂在使用前至少一个小时站立,以确保抑制剂已彻底溶解。
HJC PIM Shell 由多种高科技面料混合而成。虽然目前大多数头盔采用的是普通不饱和聚酯树脂和普通玻璃纤维,但我们结合了尽可能高水平的先进材料。这种先进优质复合材料的使用,得益于其坚固而柔韧的斜纹编织加固,可产生极高的冲击吸收率和出色的轻盈度。
cosmolite®是一种新的材料,基于100%消费前再生矿物和聚合物粘合剂(约8%-10%)。制造过程涉及将来自不同来源和不同晶粒尺寸的矿物质矿物质混合,并带有植物染料和聚酯树脂。该树脂不仅将材料结合在一起,而且在抗弯曲,撞击和吸水的抵抗时,成品具有增加的优势,并以更一般的方式使Cosmolite®物理特性和性能水平超出了原始疗法的表现。Cosmolite®产品可用于各种应用,例如厨房和虚荣上衣或定制项目。
抽象的聚甲基丙烯酸酯(PMMA)基于光学波导是简单且低成本波导的良好候选者。但是,尚未探索热性能。工作的目的是研究基于PMMA的波导的热性能。波导制造过程是在三个阶段进行的,这些阶段正在对PMMA覆层,核心材料合成和核心材料应用到覆层进行构图。横截面面积为1×1 mm 2的核心图案刻在4厘米长的PMMA板上。不饱和聚酯树脂(UPR)用作核心材料。对温度依赖性损失(TDL),温度工作范围和长期暴露耐用性的表征。用于TDL表征,温度从30°C到75°C不等。同时,对于温度工作范围,波导暴露于循环加热。通过将波导在40°C的温度下浸入蒸馏水288小时来完成热耐用性表征。结果表明,由于温度变化,TDL为0.0235 dB/°C,输出强度的变化很小。温度的最大极限为70°C。长期暴露于40 O C的温度,结果表明波导的性能良好。可以得出结论,对于低于70 O C的温度,波导性能不会受到环境温度的强烈影响。需要进一步的研究以增强其热稳定性并进一步降低温度灵敏度。Jurnal Penelitian Fisika Dan Aplikasinya(JPFA)。关键字:波导;聚甲基丙烯酸酯(PMMA);不饱和聚酯树脂(UPR);热耐用性如何引用:Yulianti I,Insan SMK,Putra NMD,Purwinarko A,Widiarti N和Ngajikin NH。基于光甲基丙烯酸酯(PMMA)的光学波导的热耐用性表征。2024; 14(2):113-124。doi:https://doi.org/10.26740/jpfa.v14n2.p113-124。
摘要:本论文介绍了风力涡轮机叶片材料(E 玻璃和聚酯树脂)子结构测试的开发,以及从该测试程序中获得的初步实验结果。密歇根州立大学正在进行的研究已经建立了转子叶片材料疲劳响应的基线数据,使用试样几何形状对 10^8 个应力循环进行测试。子结构测试的必要性基于公认的工程程序,即逐步扩大规模以进行全尺寸测试。对于复合材料风力涡轮机叶片,这种方法的必要性源于缺乏针对风力涡轮机预期寿命的动态结构设计经验,在 30 年的使用寿命中接近 10^9 个疲劳循环,并且缺乏在这种循环水平上使用 E 玻璃复合材料的经验。
规格异步,3 kW,3〜400 VAC,50 Hz YAW变速箱:类型多级变速箱制造商Bonfiglioli图纸编号L7120T023700(版本2019-07-29) 061.70.3024.000.48.150d Rev.液压系统:制造商Hydratech Industries型号HWP液压系统B6900绘图编号B6900-D,Rev.0液压图B6900-D YAW制动器:JHS-32制造商Dellner制动器JHS GMBH绘图编号VA001914 Rev.c nacelle封面:材料聚酯树脂制造商印度斯坦FRP产品绘图编号26119932旋转器:材料GRP制造商印度斯坦FRP产品绘图编号26119526转换器:型号AMSC PIN 73001135制造商AMSC AMSC AMSC额定功率3300 kW(Smart Boost Power)
船体设计的基础正在改善去年的船只MEG,以减少设计和构建船体所需的时间。因此,我们采用了MEG的基本框架,并通过调整肋骨的形状以实现更大的稳定性和流体动力学来增加船体底部的曲率。团队得出结论,其他制造方法将需要我们无法使用的时间或设备。因此,我们从传统的海洋船上取了一个提示,并建造了木制框架。,我们在木制框架上包裹了一块羊毛布,形成了所需的合奏,后来覆盖着几层用聚酯树脂密封的玻璃纤维。为了通过更精致的形状降低气泡形成的风险,我们从巨大的玻璃纤维中构建了前两层以提供强度,最后一层包含较小的床单像尺度一样彼此重叠。总的来说,我们使用相同的方法来构建船体与往年一样,因为我们已经熟悉该过程并能够产生有利的结果。
当色散存储在储罐中时,必须保持适当的存储条件。该产品的保质期为6个月,从收据日期开始,如果存储在5到30°C之间的原始未打开的容器中。在分析证书中可以描述的最大存储期间的任何更长的时间均伴随着产品的每次装运,请先优先考虑该建议,在这种情况下,分析证书中所述的时间段应完全权威。不建议使用铁或镀锌的铁容器和设备。腐蚀可能导致在进一步加工时从其分散剂或混合物的变色。因此,我们建议使用由陶瓷,橡胶或搪瓷材料制成的容器和设备,适当完成的不锈钢或塑料(刚性PVC,聚乙烯或聚酯树脂)。由于聚合物分散剂可能倾向于表面膜形成,因此在存储或运输过程中可能会形成皮肤或团块。因此,建议在使用产品之前进行过滤过程。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,这主要是因为对这些材料的行为(包括其在受到变幅载荷 (VAL) 时完整性)的了解不足。因此,本研究旨在调查不同层压板取向的 FGRC 的欠载对疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 的结果相比,欠载效应会使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
将分散液储存在储罐中时,必须保持适当的储存条件。如果将分散液储存在原装、未开封的容器中,且温度在 5 至 30 °C 之间,则 VINNAPAS® DP 390 的保质期为自收到之日起 6 个月。如果 VINNAPAS® DP 390 每次发货时随附的分析证书中规定了最长储存期,则任何更长的储存期均优先于此建议,在这种情况下,分析证书中规定的期限应具有唯一权威性。不建议使用铁或镀锌铁设备和容器,因为分散液呈弱酸性。腐蚀可能会导致分散液或其混合物在进一步加工时变色。因此,建议使用由陶瓷、橡胶或搪瓷材料、适当抛光的不锈钢或塑料(例如硬质 PVC、聚乙烯或聚酯树脂)制成的容器和设备。由于聚合物分散液可能倾向于形成表面膜,因此在储存或运输过程中可能会结皮或结块。因此建议在使用产品前进行过滤。