抽象的客观肠道微生物产物参与宿主代谢的调节。在人类和实验研究中,我们探讨了肝酯(肝苯甲酸酯2期结合产物)的潜在作用,作为代谢健康的标志物和介体。Design In 271 middle-aged non-diabetic Danish individuals, who were stratified on habitual dietary intake, we applied 1 H-nuclear magnetic resonance (NMR) spectroscopy of urine samples and shotgun-sequencing- based metagenomics of the gut microbiome to explore links between the urine level of hippurate, measures of the gut microbiome, dietary fat and markers of metabolic health.在慢性皮下注射狂热的肥胖小鼠的机理实验中,我们测试了嬉皮士和代谢表型之间的因果关系。在人类的研究中结果,我们表明尿液上的尿液与微生物基因丰富度和微生物二苯甲酸酯生物合成途径的功能模块的正相关,与Ruminococaccacacacecaceae或prepotella entotypes相比,在杆菌2型中,其中一种在bacteroides 2 enterotype中的普遍性较小。通过饮食分层,我们确定了一部分研究参与者,这些参与者消耗了富含饱和脂肪的饮食,在这种饮食中,尿液上的hippurate浓度独立于基因丰富度,与代谢健康有关。在高脂喂养的小鼠实验中,我们通过慢性输注(20 nmol/day)来证明因果关系,从而提高了葡萄糖耐受性和增强的胰岛素分泌。结论我们的人类和实验研究表明,高尿肥大的浓度是代谢健康的一般标志,在高脂饮食引起的肥胖症的背景下,嬉皮士有助于代谢改善,强调其作为代谢健康的中级潜力。
摘要:由于CT扫描技术的快速技术进步,心血管CT被广泛用于诊断心血管疾病。这些进步包括从早期到最新型号的多层CT的开发,它具有获取具有高空间和时间分辨率的图像的能力。最近的光子计数CT的出现在临床应用中进一步提高了CT性能,从而改善了空间和对比度分辨率。CT衍生的分数流储备优于基于标准CT的解剖学评估,用于检测病变特异性的心肌缺血。CT衍生的3D印刷患者特异性模型也优于标准CT,在教育价值,手术计划和心血管疾病治疗的模拟方面具有优势,并增强了医生 - 患者的交流。三维可视化工具,包括虚拟现实,增强现实和混合现实,进一步提高了心血管疾病中心血管CT的临床价值。随着人工智能,机器学习和心血管疾病中深度学习的广泛使用,心血管CT的诊断性能得到了显着改善,并且在疾病诊断和预测方面都提出了令人鼓舞的结果。还讨论了这些技术的局限性和未来前景。本评论文章概述了心血管CT的应用,从传统的管腔评估的诊断价值的角度涵盖了其性能,以鉴定易受伤害的病变,以通过使用这些高级技术来预测疾病结果。
摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
分析(图2)。,我们首先观察到器官的腔侧的一个大腔,这与肠腔相似。然后,我们在某些上皮细胞(蓝色虚线区域)上观察到具有隐窝结构和微绒毛的极化上皮细胞,这种特征通常是
在小鼠中,肠道簇细胞被描述为一种长期寿命的有丝分裂后细胞类型,其中30个已经鉴定出了两个不同的子集,称为Tuft-1和Tuft-2 1。通过结合对31次人类肠道切除材料和肠道器官的分析,我们确定了四个不同的32个人簇细胞状态,其中两个与它们的鼠重叠。我们表明,簇簇33细胞的发育取决于Wnt配体的存在,簇状细胞数在白介素(IL)-4和IL-13暴露后迅速增加34,如小鼠2-4中报道。这35个是通过预先存在的簇细胞的扩散而来发生的,而不是通过从干细胞中增加的36产生来发生。的确,在胎儿和成人37人类肠道中,增殖性簇细胞在体内都存在。单个成熟的增殖簇细胞可以形成含有所有38种肠上皮细胞类型的器官。与干细胞和祖细胞不同,人簇细胞生存39辐射损伤,并保留产生所有其他上皮细胞类型的能力。因此,缺乏簇簇细胞的40种手机无法从辐射诱导的损伤中恢复。因此,41个簇细胞代表了人类损伤诱导的储备肠干细胞库。42
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。