主要结果和偶然性的作用:生命耳语 AI 模型对可行胚胎的敏感性为 70.1%,而对来自不同诊所的三个独立盲测集的非可行胚胎的特异性为 60.5%。每个盲测集的加权总体准确率 > 63%,可行胚胎和不可行胚胎的综合准确率为 64.3%,表明模型的稳健性和普遍性超出了偶然性预期的结果。预测分布显示正确和错误分类的胚胎明显分离。可行/不可行胚胎分类的二元比较显示胚胎学家的准确率提高了 24.7%(P = 0.047,n = 2,学生 t 检验),5 波段排名比较显示胚胎学家的准确率提高了 42.0%(P = 0.028,n = 2,学生 t 检验)。
主要结果和偶然性的作用:生命耳语 AI 模型对可行胚胎的敏感性为 70.1%,而对来自不同诊所的三个独立盲测集的非可行胚胎的特异性为 60.5%。每个盲测集的加权总体准确率 > 63%,可行胚胎和不可行胚胎的综合准确率为 64.3%,表明模型的稳健性和普遍性超出了偶然性预期的结果。预测分布显示正确和错误分类的胚胎明显分离。可行/不可行胚胎分类的二元比较显示胚胎学家的准确率提高了 24.7%(P = 0.047,n = 2,学生 t 检验),5 波段排名比较显示胚胎学家的准确率提高了 42.0%(P = 0.028,n = 2,学生 t 检验)。
Klarissa Jackson 博士目前是北卡罗来纳大学教堂山分校 Eshelman 药学院药物治疗和实验治疗学系的助理教授。她是 ASPET 的活跃成员,担任 ASPET 药物代谢和处置部门 (DMDD) 的秘书/财务主管。Jackson 博士还是 ASPET 研究员审查委员会的成员。她曾担任 DMDD 的顾问以及指导和职业发展委员会的成员。Jackson 博士自 2013 年起成为 ASPET 成员,她与 The Pharmacologist 分享她对年轻科学家的见解和指导。
参考文献[1]剪切AIDSPIRO,D.Z。(2022)。为什么要整天戴助听器?,听力学岛。可在以下网址提供:https://audiologyisland.com/blog/wearing-hreawing-aids-all-day/。[2] Wong,L。L.,Hickson,L。和McPherson,B。(2003)。助听器满意度:过去20年的研究怎么说?放大的趋势,7(4),117–161。https://doi.org/10.1177/108471380300700402 [3] Johnson,C.E.,Jilla,A.M。和Danhearingaids,J.L。,(2018年)。 开发基本咨询技能,以解决听觉恢复康复中的依从性问题。 在听证会上的研讨会中(第1卷 39,编号 01,pp。 013-031)。 主题医学出版商。https://doi.org/10.1177/108471380300700402 [3] Johnson,C.E.,Jilla,A.M。和Danhearingaids,J.L。,(2018年)。开发基本咨询技能,以解决听觉恢复康复中的依从性问题。在听证会上的研讨会中(第1卷39,编号01,pp。013-031)。主题医学出版商。
生物技术已成为一个变革性领域,在医学,农业和环境科学之间具有重要意义。随着其快速增长,对具有专业技能的专业人士的需求越来越多,可以满足行业的需求。获得基本能力可以显着提高职业前景并加强简历。发展特定生物技术学家技能方面的专业知识对于促进就业能力和释放该行业内的各种机会至关重要。基因编辑是一个关注的关键领域,它彻底改变了遗传疾病,农业改善和新疗法的方法。基因编辑在修改遗传物质方面具有精度,尤其是通过CRISPR-CAS9系统,允许在DNA序列中进行靶向改变。这项技术具有在其来源治疗遗传疾病的巨大希望,通过纠正DNA级误差来解决囊性纤维化和镰状细胞贫血等疾病。然而,道德考虑是基因编辑对话不可或缺的一部分,并开发了监管框架以确保负责任和道德使用。公众参与对于制定这些政策,平衡科学进步与社会价值观至关重要。重点的另一个关键领域是生物信息学,这标志着研究人员如何处理和解释生物学数据的转变。生物信息学提供了用于管理和分析大量数据集,桥接生物学和数据科学的计算工具。算法和软件促进了大规模数据的组织和分析,允许根据证据获得明智的决定。对生物信息学家的需求正在增长,因为行业认识到其在破译复杂数据集和推动创新方面的价值。教育计划正在不断发展,以满足这一需求,提供专门的课程,使学生为学生提供Python或R,统计模型和生物学原理等编程语言。职业合并生物学和技术是创新的温床。PCR技术:生物技术中的游戏改变者是聚合酶链反应(PCR)。这种方法使研究人员可以从微小的样品中增加数百万次的特定DNA段。它用于取证,临床诊断等。是什么使PCR如此通用?它可以以高精度和速度扩增DNA。这是其工作原理:首先,热量将DNA链分开(变性)。然后,引物与目标区域(退火)结合,定义了放大的内容。接下来,DNA聚合酶通过添加核苷酸(扩展)来构建新链。此周期重复,导致超快速扩增。PCR随着调整增强其功能和应用的调整而发展。实时PCR可让您量化基因表达分析和病原体检测的DNA。逆转录PCR(RT-PCR)在扩增它之前将RNA转换为DNA,从而可以研究基因表达模式和病毒检测。这些进步表明PCR适应于满足各种研究和临床需求的能力。分子克隆:这种生物技术中的基本技术使科学家可以创建特定DNA片段的副本。这是基因工程的必备,使研究人员可以研究和操纵各种生物体的基因。为此,您将DNA片段插入矢量 - 一种特殊的分子,将遗传物质携带到宿主有机体。质粒和噬菌体是分子克隆中使用的常见矢量。然后将重组DNA引入宿主细胞(通常是大肠杆菌细菌)。该细胞复制,产生许多插入基因的副本。成功的克隆是通过纳入载体中的抗生素耐药基因等标记来鉴定的。分子克隆在研究和行业中具有深远的应用。在药品中,它产生用于治疗疾病(例如胰岛素和生长激素)的必需蛋白质。克隆也有助于农业中的转基因生物(GMO),使农作物对害虫有抵抗力,更有营养。DNA测序:这种生物技术中的尖端工具揭示了生物的遗传蓝图。通过确定DNA分子中核苷酸的精确顺序,研究人员解锁了对生物学功能的宝贵见解。测序技术的进步提高了准确性和速度,为基础研究及其他地区的新发现打开了大门。下一代测序由于速度提高和成本降低而变得越来越广泛地使用,从而在各个领域开放了机会。在医学中,DNA分析有助于鉴定与疾病有关的基因突变,从而可以较早诊断和量身定制治疗计划。在医学中,DNA分析有助于鉴定与疾病有关的基因突变,从而可以较早诊断和量身定制治疗计划。该技术还通过确定促进肿瘤生长的突变,从而有助于癌症研究,从而使靶向疗法成为可能。除了医疗保健之外,测序在进化生物学中起着关键作用,随着时间的推移追踪物种的历史并提供了对生物多样性的见解。蛋白质纯化对于理解蛋白质在生物过程中的功能和相互作用至关重要。此过程涉及将特定的蛋白质与复杂混合物中隔离开来,从而使研究人员可以更深入地了解其结构和行为。诸如亲和力色谱和电泳之类的技术用于达到高纯度水平,每种方法都针对所讨论的蛋白质的独特特性量身定制。纯化的蛋白质对于药物开发和生物制剂的生产至关重要,作为靶标或活性成分。它们在工业应用中也至关重要,例如生物燃料或食品加工的酶生产。有效的蛋白质纯化使研究人员能够探索蛋白质相互作用,稳定性和活性,从而推动了多个科学学科的创新。细胞培养是生物技术的基本技术,它允许科学家在自然环境之外生长和研究细胞。此方法对于细胞生物学,药物发现和再生医学的研究至关重要。通过维持细胞体外,科学家可以研究细胞过程,测试药物疗效并产生生物制剂。细胞培养在干细胞研究中也至关重要,支持旨在修复受损组织或器官的再生疗法的发展。细胞培养技术的进步增强了体外模型的生理相关性,从而可以更准确地模拟人体组织并提高可预测性。色谱法是一种强大的分析技术,用于分离和分析混合物的组件。它被广泛应用于生物技术中,以用于生物分子的纯化和表征。诸如气相色谱(GC)和高性能液相色谱(HPLC)等技术实现高分辨率分离,每种分离都适用于特定类型的分析物。在药物中,色谱法对于质量控制至关重要,可确保药物的纯度和效力。它也用于环境科学来检测污染物和食品安全中,以鉴定污染物。色谱的多功能性使其成为分析科学的基石。显微镜为科学家提供了一种在微观水平上可视化结构的方式,从而使他们能够深入了解肉眼下面的复杂世界。这项技术彻底改变了从生物学和医学到材料科学和工程学的各个领域。高级生物技术技术(例如显微镜)在分子水平上为生物系统提供了详细的见解。这有助于研究人员了解细胞的工作,互动和对不同条件的反应。在研究环境中,显微镜允许科学家研究细胞结构,跟踪分子过程并观察实时的变化。它也通过帮助医生确定与疾病相关的细胞变化,在临床诊断中起着至关重要的作用。开发测定法或测试对于测量生物样品中特定物质的存在或活性至关重要。这些测定法用于研究,诊断和药物开发,以提供有关生物学过程的准确数据。在药物发现中,测定有助于筛选治疗特性的潜在化合物,从而指导进一步发展。在临床环境中,诊断测定能够快速检测生物标志物,有助于疾病管理。工作生物反应器涉及在受控条件下培养细胞或微生物以生产各种生物产物。生物反应器优化生长和生产力,从而大规模生产生物制剂,疫苗和生物燃料。通过控制温度,pH和氧气水平等关键参数,生物反应器可确保最佳的生物学活性条件。有效的数据分析在生物技术中至关重要,使研究人员可以解释复杂的数据集并得出有意义的结论。随着高通量技术的数据量的增加,数据分析工具和软件的熟练程度至关重要。诸如统计分析,机器学习和数据可视化之类的技术发现了生物学数据中的模式和关系,从而有助于基因组学和蛋白质组学等领域的进步。有效分析和解释数据的能力对于促进科学知识和改善医疗保健结果至关重要。在不断发展的生物技术领域中改善决策和驱动创新至关重要。生物技术学家在该领域起着至关重要的作用,由于全球药品和生物技术公司的扩大,职业机会的增加。生物技术结合了生物学和技术,以在农业,食品和医学等领域进行开创性的发现。作为一名生物技术学家,您可以期望: *单独或作为团队的一部分进行实验 *与主管,同事和同伴合作,通过电话会议 *在工业实验室单位,大学,医院或工厂或工厂或工厂工作 *利用专业实验室设备和机器来创造成果的工业,从而在各个工业中开发了各个方面的技术。由研究公司,政府运营的企业,环境保护小组等雇用,生物技术医生在使用实时病毒,细菌或危险材料时遵循严格的安全协议。典型的生物技术学家的标准工作周为35-40小时,但可能涉及夜班,周末或对实验的持续监测。随着技术和科学进步的不断发展,新的子领域正在出现,为增长和探索创造了动态的环境。生物技术的类型包括使用活生物体或生物分子过程开发新药的医学和健康应用,以及其他领域,例如生物燃料,药品,食品生产,保护等。为各种健康问题开发解决方案,包括识别遗传疾病和治疗某些疾病。海洋生物技术专注于创建疫苗和药物以防止鱼类感染。环境应用涉及检测和控制污染,开发可再生能源并生产可生物降解的材料。生物燃料是通过使用生物质产生的有机化合物和化学物质来降低精炼成本来创建的,这有助于减少温室气体的排放。农业生物技术通过遗传修饰提高了农作物的生产力和有害生物的抗性。工业应用包括酶的生产,可增强味道和食物,以及在较低温度下的清洁。生物技术医生专门研究干细胞研究,癌症研究,微生物科学,病毒学,遗传学,生物化学和药理学。职责包括维护实验室设备,操作计算机,确保满足健康和安全法规,执行实验,遵循新方法,并独立或作为团队的一部分工作。该领域需要技能,例如解决问题,对细节的关注,出色的沟通,组织和分析技能。成为一名生物技术学家,通常需要完成多年的研究,从生物技术学士学位开始。在研究生物技术学位之前,通常建议首先获得一般科学或相关领域的本科学位。此外,一些雇主可能需要或更喜欢具有研究生学历的候选人,例如硕士学位或博士学位,尤其是在学术界或研究中的角色。然后,该基础可以作为医学,生物学,微生物学,化学,过程工程,生物化学,制药科学,环境生物学或化学工程等领域的更专业学位的垫脚石。在您的本科学习期间,您通常有机会通过生物技术领域的工作安置或实习来获得动手经验。这些经验不仅为行业提供了宝贵的见解,而且还使您有机会与有可能成为导师或促进未来职业发展的专业人士建立联系。确保基于实验室的工作经验特别有益,因为它直接适用于就业市场,并在毕业后增强了您的就业能力。但是,在与您的利益和能力一致的领域中获得经验同样重要。在申请角色时,即使通过其他手段获得商业见解也可能是一个重要的优势。进入劳动力时,您可能会接受一项公司入职计划,该计划涵盖有关法规,健康和安全程序以及处理危险物质的基本培训。此外,持续的在职培训将有助于通过生物技术的最新进步来保持最新的技术技能。在某些情况下,公司可能会提供永久合同以及个人发展计划,从而通过参加研讨会和会议来帮助您保持动力,以增强您的专业能力。值得注意的是,对于与生物技术密切相关的角色的专业人员,有多种替代职称。生物技术领域内的职业发展可能会取决于多个因素,包括专业领域,公司规模,行业和资格。凭借足够的经验,有可能晋升为更高级角色或探索组织的其他领域,例如生产,业务开发,IT或监管事务。生物技术部门的一些大公司可能会发布与药品,生物化学和医学专门相关的职位空缺,而较小的公司可能会在不同的职位上做广告。生物化学家,基因组技术人员,生物工程师,微生物学家和生物处理工程师都是可以在食品制造,农业组织,研究机构,化学公司或制药公司等各种行业工作的专业人员。生物技术学家的平均工资每年约为30,911欧元,这可能会根据工作重点,行业和个人经验等因素而波动。在私人商业部门中,大型公司的高级职位可能会提供更高的薪水。工资数字可能会根据雇用组织,候选人的经验,学术背景和地点而有所不同。
有关胚胎发展的研究正在进入一个新时代。作为解剖学中传统上描述性的纪律,胚胎学家已经形成了国际财团,并将重要的组织学收集数字化以保存和开放访问。胚胎发育最近在单细胞水平的颞空间转录组学上受到了更广泛的关注。这些可以预期这些跨学科的意义助长了破译胚胎发育的努力。解决其复杂性涵盖了许多挑战,这些挑战与科学,社会和政治领域相交,强调了其杰出的重要性及其固有的跨学科性质。这个领域的挑战绝不是理解复杂的生物学机制,但也具有人道主义意义。为了充分理解人类发展的机制,主要分析了胚胎发生的原则,并采用动物模型来扩大对发育过程的看法。由于最近的开拓性工作和技术进步以基于干细胞的3D方法为中心,因此我们进入了有关哺乳动物胚胎发育的历史新阶段。在脊椎动物中,现在越来越多的关注点集中在动物实验的减少。 这篇观点文章概述了这个惊人的领域的主要挑战,该挑战为基本生物医学科学以及相关的翻译方法提供了巨大的潜力,如果它们在多学科的话语中得到解决。在脊椎动物中,现在越来越多的关注点集中在动物实验的减少。这篇观点文章概述了这个惊人的领域的主要挑战,该挑战为基本生物医学科学以及相关的翻译方法提供了巨大的潜力,如果它们在多学科的话语中得到解决。
TROUBLESHOOTING • Low fertility • Pre-incubation • Improper fumigation • Improper turning • Improper temperature • Improper humidity • Improper ventilation • Inverted eggs • Rough egg handling • Insufficient egg holding time • Rough setting of eggs • Contaminated eggs • Nutritional-drugs-toxins
监管路径 国家或地区 相关法律法规 人类基因编辑监管特点 日本 2000 年《人类克隆技术管制法案》 (The Human 没有制定专门涉及人类胚胎、受精卵、精子 Cloning Regulation Act) ,禁止将克隆人胚胎和 或卵子的伦理指南和法律,其更多依赖于 具有人类和动物遗传物质的胚胎植入子宫。 各个政府部门的监督管理。 2013 年《再生医学安全保障法》 (Regeneration Medicine Promotion Law) ,分级管理再生医疗 风险,科研机构使用基因工程方法修饰后细 胞培养和处理需要通知日本卫生劳动福利部, 获得许可后方可开展研究。 保守 德国 1949 年《德国基本法》 (Basic Law for the Federal 《德国基本法》并没有提供明确和直接的规 Republic of Germany) ,其第 1 条和第 2 条分别规 定,但规定了立法机关必须保护胚胎的基 定了人的尊严、生命权和完整权,保护的范围 本权利。 不仅包括精神病患者、植物人,还包括胎儿和 《胚胎保护法》形成了完全禁止人类胚胎 胚胎。 基因编辑相关临床试验的逻辑森严的刑法 1990 年《胚胎保护法》 (The German Embryo 规制框架。 Protection Law) ,管理人工基因干预生殖系细 胞的情况,其第 5 条第 1 款规定任何人为改变人 类生殖系细胞遗传信息的人,将被处以最高 5 年的监禁或罚款;其第 5 条第 4 款专门规定了非 生殖目的的体外生殖系细胞人工干预不适用第 1 款刑事禁令,确保科研人员在安全性的前提 下进行人类胚胎相关实验的自由。 欧盟 2007 年《欧洲联盟基本权利宪章》 (Charter of 法律允许人类体细胞基因编辑,但明确禁止 Fundamental Rights of the European Union) ,其 在人类胚胎上使用基因编辑技术。 第 3 条禁止基因改造医疗行为,包括人种选择 行为、将人体作为经济收益来源的行为以及克 隆人类行为。 1997 年《人权与生物医学公约》 (Convention on Human Rights and Biomedicine) ,其第 13 条也引 入了对优生学的禁令,规定只能基于预防、诊 断或治疗目的修改人类基因组,并且不允许在 任何后代的基因组中引入任何基因改造。 折衷 美国 2015 年美国白宫发布了有关现阶段反对任何人类 法律不限制技术本身,但限制技术的应用场 种系基因组编辑行为的声明。 2015 年《综合拨 景。鉴于基因编辑是一种工具,不是特定 款法案》 (Consolidated Appropriations Act) ,增 的药物、设备或生物疗法,因而必须在其 加了禁止美国食品药品监督管理局 (Food and 使用的每个领域中审视其是否符合法律 Drug Administration) 使用任何联邦资金资助有 规定。 意修改人类胚胎可遗传物质的研究。 美国食品药品监督管理局禁止涉及可遗传 人类基因组编辑的临床试验,一些州也明 确禁止人类胚胎的特定研究活动。 中国 2020 年《民法典》第 1009 条,从事与人体基因、人 法律对人类体细胞基因编辑的研究和应用不 体胚胎等有关的医学和科研活动,应当遵守法 加以限制,人类胚胎细胞的基因编辑基础 律、行政法规和国家有关规定,不得危害 人体 研究不被禁止,但其临床应用则不被允 健康,不得违背伦理道德,不得损害公共利益。 许,不论是用于生殖目的或是医治患者。 2020 年《刑法》修正案 ( 十一 ) 增加第三百三十 六条,将基因编辑、克隆的人类胚胎植入人体 或者动物体内,或者将基因编辑、克隆的动物 胚胎植入人体内,情节严重的,处三年以下有 期徒刑或者拘役,并处罚金;情节特别严重的, 处三年以上七年以下有期徒刑,并处罚金。
摘要 人工智能 (AI) 因其在通信、交通、媒体和社交网络中的关键作用而成为人类生活中必不可少的工具。受人类复杂神经网络及其功能的启发,自 20 世纪 50 年代以来,人们就开始使用基于计算机的算法和训练来探索人工智能。为了处理大量患者的临床数据、影像、组织病理学数据,以及新疗法和临床试验研究的不断加快,以及随着新药和新证据的出现而不断变化的治疗指南,人工智能是当务之急。关于人工智能在肿瘤学领域的作用,有许多出版物和积极研究。在这篇综述中,我们讨论了人工智能的基本术语、它在肿瘤学中的应用以及它的局限性。人工智能、机器学习和深度学习之间存在相互关系。人工智能的虚拟分支涉及机器学习。而人工智能的物理分支则涉及不同形式的治疗——手术、靶向药物输送和老年护理。人工智能在肿瘤学中的应用包括癌症筛查、诊断(临床、影像和组织病理学)、放射治疗(图像采集、肿瘤和风险器官分割、图像配准、规划和输送)、治疗结果和毒性预测、癌细胞对治疗的敏感性预测和临床决策。一个特定的兴趣领域是借助人工智能开发针对每个患者和肿瘤的有效药物组合。放射组学是新兴学科,涉及放射治疗的规划和管理。与任何新发明一样,人工智能也有其谬误。其局限性包括缺乏外部验证和普遍性证明、罕见疾病数据获取困难、道德和法律问题、预测背后没有精确的逻辑,最后但并非最不重要的是,医疗专业人员缺乏教育和专业知识。临床肿瘤学、生物信息学和数据科学部门之间的合作可以帮助在不久的将来克服这些问题。
Ekaterina Borisova - 国立高等经济学院研究型大学 Timothy Frye - 哥伦比亚大学 Israel Marques - 国立高等经济学院研究型大学 Koen Schoors - 根特大学 Georgiy Syunyaev - WZB 柏林社会科学中心 Vladimir Zabolotskiy - 国立高等经济学院研究型大学