在此背景下,两大研究团队围绕CRISPR-Cas9技术基础专利持续数年的争端显得尤为重要。 4 一边是布罗德研究所(由麻省理工学院和哈佛大学联合支持)的张锋,另一边是 Emmanuelle Charpentier 和 Jennifer Doudna。这场争议涉及 CRISPR-Cas9 技术基本要素的权利。尽管卡彭蒂耶和杜德纳于2020年10月因其研究获得了诺贝尔化学奖,但张锋迄今为止在美国这场纠纷中胜过了研究人员。然而,法律情况很复杂——部分原因是不同的司法管辖区会出现不同的结果。
如果需要进一步的证据来证明日本船级社对限制船舶污染所需的技术创新给予了优先考虑,那么值得注意的是,合作项目已经延伸到了海外。NYK Line、MTI、Alfa Laval 和日本船级社已经与新加坡南洋理工大学和胜科海洋技术有限公司合作,共同研究 EGCS 技术。此外,日本船级社和新加坡海事及港务局于 2015 年初签署了谅解备忘录,其中将船舶排放问题列为优先事项,该备忘录涵盖了以东南亚枢纽为中心的联合研发和技术创新项目。随着法规范围不断扩大,日本船级社将继续与合作伙伴合作,帮助为整个海事行业开发创新解决方案。
抽象背景:黑色素瘤是一种侵略性的皮肤癌,由于其发病率上升和治疗功效有限,因此引起了大量研究的关注。肿瘤细胞通常会变得更具侵略性的化学后疗法,避免先天和适应性免疫反应,从而导致复发和转移。识别抗化疗的机制对于降低死亡率至关重要。阴性免疫途径,例如T-淋巴细胞相关蛋白4(CTLA-4),程序性死亡 - 凸线1(PD-L1)和T细胞激活(VISTA)的V型域Ig抑制因子(VISTA)阻碍对癌症的免疫反应。这项研究旨在发现黑色素瘤癌细胞系中关键免疫检查点,PD-L1和CTLA-4的表达模式的动态变化。方法:在这项研究中,使用常规细胞培养技术培养了A-375黑色素瘤癌细胞系。使用MTT检验确定了IC50(半Ximimal抑制浓度)和化学疗法药物,多西他赛和阿霉素的疗效评估。在使用定量逆转录 - 聚合酶链反应(QRT-PCR)进行了治疗后,对A-375细胞系中Pd-L1,CTLA-4和Vista基因的表达进行分析。单向方差分析(ANOVA)用于统计分析。所有实验均以一式三份进行,显着性设置为p <0.05。统计显着性表示如下:*p <0.05,** p <0.01,*** p <0.001和**** p <0.0001。结果:在ADO组和ADC组中都观察到了Vista表达的显着上调。在ADC组中, CTLA-4的表达显着增加,而在ADO组中未观察到显着变化。 与对照组相比,ADO组和ADC组的 PD-L1表达显着更高。 结论:这些引人入胜的发现强调了化学治疗剂对免疫检查点基因表达增强的深远影响,从而阐明了与免疫反应调节有关的重要途径的潜在调节。 关键字:黑色素瘤,化学疗法,免疫检查点,Vista,CTLA-4,PD-L1CTLA-4的表达显着增加,而在ADO组中未观察到显着变化。与对照组相比,ADO组和ADC组的 PD-L1表达显着更高。 结论:这些引人入胜的发现强调了化学治疗剂对免疫检查点基因表达增强的深远影响,从而阐明了与免疫反应调节有关的重要途径的潜在调节。 关键字:黑色素瘤,化学疗法,免疫检查点,Vista,CTLA-4,PD-L1PD-L1表达显着更高。结论:这些引人入胜的发现强调了化学治疗剂对免疫检查点基因表达增强的深远影响,从而阐明了与免疫反应调节有关的重要途径的潜在调节。关键字:黑色素瘤,化学疗法,免疫检查点,Vista,CTLA-4,PD-L1
大型语言模式(LLM)的最新突破已围绕少数数据富含数据的语言。扩大超越一流公民语言的突破需要什么?我们的工作介绍了Aya,这是一种大量多语言的生成语言模型,遵循101种语言的说明,其中50%以上被认为是较低的资源。aya在大多数任务上都优于mt0和bloomz,同时将语言数量增加了两倍。我们引入了广泛的新评估套件,以扩大99种语言的多语言评估的最新评估,包括歧视和生成性任务,人类评估以及模拟的胜利率,涵盖了涵盖任务和分发性能的效果。fur-hoverore,我们对我们模型的最佳芬特混合物组成,数据修剪以及毒性,偏见和安全性进行了详细研究。
不可避免地说该战略是如今的艺术与科学的结合。策略的艺术方面意味着由人的创造性想象创造的主观,而策略的科学方面则意味着客观上真实的经验性。在远古时代,“战略”一词在与指挥官行业的古代方面特别相关,以制定反对派的战斗计划,这似乎更像我们现在称为“战术”。在战斗中的成功和胜利是证明,表明指挥官带领下属征服敌人的能力和能力。策略,传统上是在第一个世纪直到第一次世界大战的传统上看到的,这是创造战略战略的指挥官的技能和专业知识,这成为战争成功的关键决定因素。从这个意义上讲,一位熟练的战略家被视为具有战斗经历积累的人,他能够在危机中成功地结合了本能和策略。
摘要背景 能够进一步预防近期心肌梗死 (MI) 患者发生心力衰竭 (HF) 和其他心血管和代谢事件的治疗方法代表着巨大的且尚未得到满足的医疗需求。方法 DAPA-MI 是一项多中心、平行组、基于注册的随机、双盲、安慰剂对照的 3 期试验,试验对象为未患已知糖尿病或未确诊 HF、表现为 MI 和左心室收缩功能受损或 Q 波 MI 的患者。该试验评估了达格列净 10 mg 与安慰剂(每日一次,除标准治疗外)对死亡、HF 住院 (HHF) 和其他心脏代谢结果的影响。该试验的主要目的是使用胜率法比较死亡、HHF、非致命性 MI、心房颤动/扑动、新发 2 型糖尿病、上次访视时根据纽约心脏协会功能分类测量的 HF 症状以及上次访视时体重下降≥ 5% 的分层综合结果,以确定达格列净是否优于安慰剂。假设达格列净和安慰剂之间的真实胜率为 1.20,则 4,000 名患者为主要综合结果的检验提供了 80% 的统计功效。基于登记处的随机对照试验框架允许使用与试验数据库集成的现有国家临床登记处(瑞典和英国)进行基线人口统计学、药物和临床结果的招募、随机化、盲法和实用数据收集。结论该试验探索了进一步改善心肌梗死后 LV 功能受损患者预后的机会。 DAPA-MI 的创新试验设计结合了国家临床注册数据,促进了高效的患者招募和结果确定。试验注册 ClinicalTrials.gov 标识符 NCT04564742。(Am Heart J 2023;266:188–197。)
脐尿管源自胚胎尿囊,是胎儿期连接膀胱和脐带的管道。随后,脐尿管最终退化形成称为脐正中韧带的纤维肌索。如果脐尿管无法退化,则可能导致脐尿管异常增生,甚至导致恶性肿瘤。脐尿管癌 (UrC) 是一种罕见但具有侵袭性的恶性肿瘤,占所有膀胱癌的不到 1% (Bruins et al., 2012) 。脐尿管癌在早期通常无症状,约一半的患者需要系统性化疗来延长生存期 (Szarvas et al., 2016)。然而,只有有限数量的晚期疾病患者对传统化疗有反应,而且目前还没有足够有力的研究来证实这些益处 ( Loizzo 等人,2022 年)。在其他类型的癌症中,包括结直肠癌 (CRC),靶向治疗对具有特定分子标记表达的患者显示出显着的疗效 ( Joo 等人,2013 年)。这些令人鼓舞的结果引起了研究人员对 UrC 精准治疗的浓厚兴趣。近年来,一些临床系列研究了 UrC 患者的基因组改变,并在靶向治疗方面获得了有希望的发现。因此,在本综述中,我们全面讨论了 UrC 的分子谱,并进一步确定了个性化治疗 UrC 的潜在靶点。此外,考虑到免疫检查点抑制剂的临床可能性,我们还讨论了几种免疫治疗的生物标志物。
摘要。近年来,深度学习模型已迅速成为中型天气预报的基于物理学的数值模型的独立替代品。几个独立的研究小组声称已经开发了深度学习天气预报,这些预测胜过了基于州的物理模型,以及数据驱动的预测的运营实现似乎正在近乎。然而,关于深度学习模型在提供极端天气预测方面的能力仍然存在的问题。本文概述了深度学习天气预报领域的最新发展,并审查了极端天气事件对领导深度学习模型的挑战。最后,它主张需要定制数据驱动的模型来预测极端事件,并提出了开发此类模型的基础工作流量。
塞缪尔的圣经书描述了大卫对巨人的故事。挑战一场战斗以解决结果,以色列人提名戴维面对非利士人的冠军巨人。只与他的员工,吊带和五块石头一起武装,戴维面对戈利亚斯,他是一个穿着装甲的男人的巨人,并用标枪武装。大卫从他的吊带上扔了一块石头,在额头的中心击中了巨人,巨人摔倒在他的脸上,大卫砍下了头 - 因此,胜利是弱者。虽然故事经常被用来教孩子如何克服赔率;对于战士来说,这将表示一场对峙攻击,在该攻击中,在发射器不受伤害时,发射了弹丸。大卫因此拥有一种技术优势,否定了对手的优势。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。