ganciclovir抗性突变体759R1)100源自人类巨细胞病毒菌株AD169含有两个抗性突变,其中一个是UL97基因,导致受感染细胞中ganciclovir磷酸化的降低[V. V. V.。 Sullivan,C。L. Talarico,S。C. Stanat,M。Davis,D。M. Coen和K. K. Biron,Nature(伦敦)358:162-164,1992]。在本研究中,我们将第二个突变映射到包含DNA聚合酶基因的4.1-kb DNA片段,并表明它赋予了Ganciclovir抗性而不会损害磷酸化。对4.1-kb区域的序列分析显示,在DNA聚合酶的保守区域V中,在987的位置导致了单个核苷酸变化。重组病毒构建为含有DNA聚合酶突变,但不显示与原始突变体759RD100(22倍)相对于Ganciclovir的中间电阻(4至6倍);重组病毒还表现出对ganciclovir循环磷酸盐(7倍),1-(二羟基-2-二羟基甲基) - 环胞嘧啶(12倍)和磷酸二甲基烷基衍生物(S)-1-(S)-1-(3-羟基-2-磷酸磷酸盐)的抗性。 (S)-1-(3-羟基-2-磷酸甲氧基)胞嘧啶(8至10倍)。但是,重组病毒仍然容易受到某些相关化合物的影响。这些结果表明,人类巨细胞病毒DNA聚合酶是Ganciclovir的抗病毒活性的选择性靶标,Ganciclovir是其某些衍生物和磷酸氧基烷基衍生物的选择。支持区域V在底物识别中的作用;并提出由于聚合酶突变而导致人类巨细胞病毒对这些化合物的临床抗性的可能性。
抽象DNA甲基化是一种典型的表观遗传机制。被广泛认为是基因沉默的稳定调节剂,它代表了一种“分子盲文”的形式,它在DNA上进行了化学印刷,以调节其结构及其遗传信息的表达。然而,曾经有一段时间,甲基仅存在于细胞中,我的单独斑点在DNA的胞嘧啶构建块上斑点。为什么生命守则化学修改,显然是“没有酶作用的事故”(Wyatt 1951)?如果人体中的所有细胞共享相同的基因组序列,它们如何采用独特的功能并保持稳定的发育状态?细胞还记得吗?从这个历史的角度来看,我回顾了表观遗传史和原理以及工具,关键科学家和概念,这些概念使我们综合和发现原核生物和真核甲基化的DNA。大量借鉴了杰拉德·怀亚特(Gerard Wyatt)对跨物种甲基化DNA的不对称水平以及一对有远见的1975 DNA甲基化论文的观察,5-甲基胞嘧啶与细菌中的DNA甲基化酶有关,通过稳定的细胞的发育和构成蛋白质的构造,稳定的细胞状态的维持稳定的细胞状态与稳定的细胞状态结合。这些作品不仅塑造了我们对遗传力和基因调节的看法,而且还提醒我们,核心表观遗传概念源于对表观遗传机制的内在要求出现。在原核生物和真核世界的观察过程中,表观遗传系统的功能可访问和解释各种生命形式的遗传信息。共同为我们的当今表观遗传学理解提供了许多指导原则,并为后基因组学界的下一代表观遗传探究提供了许多指导原则。
如果腺嘌呤是原始链中的下一个暴露基础,则会添加胸腺核苷酸,如果胞嘧啶是原始链的下一个暴露基碱,则会添加鸟嘌呤核苷酸,并且仅根据与新的粘合物的规定,将鸟嘌呤核苷酸添加到新的基本链条之间,仅将基本构成形式添加到新的链接之间,如果构成的规则,则仅在水中构成了构成的规则。因此,新的DNA分子保留了一半的母体DNA,然后使用它来创建一个新的女儿链DNA复制在多细胞生物中很重要,原因是:
如果腺嘌呤是原始链中的下一个暴露基础,则会添加胸腺核苷酸,如果胞嘧啶是原始链的下一个暴露基碱,则会添加鸟嘌呤核苷酸,并且仅根据与新的粘合物的规定,将鸟嘌呤核苷酸添加到新的基本链条之间,仅将基本构成形式添加到新的链接之间,如果构成的规则,则仅在水中构成了构成的规则。因此,新的DNA分子保留了一半的母体DNA,然后使用它来创建一个新的女儿链DNA复制在多细胞生物中很重要,原因是:
DNA中的氮基碱包括腺嘌呤,鸟嘌呤和胞嘧啶,而RNA含有尿嘧啶而不是胸腺素。解旋启动DNA合成,而聚合酶是负责通过在生长链中添加核苷酸来复制DNA的主要酶。DNA的糖磷酸主链由磷酸二酯键一起保持。一个称为复制起源的特定序列是染色体上DNA合成的起点。DNA的双螺旋结构具有主要和次要凹槽,这对于其功能很重要。双螺旋的每个转弯都有这些凹槽,从而允许复制过程发生。在DNA复制过程中,氮基碱的正确配对对于维持遗传信息的完整性至关重要。此过程发生在细胞分裂之前,涉及DNA双螺旋的放松形成两个模板链。领先链是连续合成的,而滞后链则形成短片段,然后通过连接酶将其连接在一起。在复制位点形成Y形结构是过程中的重要一步。RNA或DNA的引物序列是DNA合成的模板,并且在复制完成后必须去除这些引物。参与DNA复制的键酶包括解旋酶,聚合酶和连接酶。旋转酶放松双螺旋,而聚合酶为生长链增添核苷酸。连接酶将滞后链的短片段连接在一起。连接5'和3'时,会形成磷酸酯主链。与DNA复制有关的一些重要术语包括前导链,滞后链,复制的起源和滑动夹具蛋白。DNA复制过程对于忠实地从一代细胞到下一个细胞的遗传信息传播至关重要。仅在RNA中发现的化合物被称为** uracil **,而** okazaki碎片**请参阅滞后链上的短段或片段。DNA的基本三维形状是A **双螺旋**结构,而RNA是单链,不稳定的,并且可以离开细胞核。基因由DNA组成,代表遗传的基本物理和功能单位。通过破坏弱氢键解解酶的酶称为**解旋酶**。平行但在相反方向的两个侧面称为**反平行**。嘧啶由单个碳环组成,而核苷酸由磷酸盐,糖和氮碱组成。DNA是双链,稳定的,并且保持在核内。根据夏尔加夫的统治,鸟嘌呤总是与胞嘧啶配对。核糖是RNA核苷酸中发现的糖,而脱氧核糖是DNA核苷酸中存在的5-碳糖。氢键将DNA的两条链组合在一起,** primase **是负责放下RNA底漆的酶。互补意味着一侧可以与另一侧配对或补充另一侧。由重复核苷酸制成的长聚合物称为DNA。五个氮基是腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶和尿嘧啶。双螺旋的“主链”是磷酸骨架。** DNA聚合酶**是促催化DNA分子合成的酶中的一种酶。嘧啶衍生物包括三个氮基碱 - 尿嘧啶,胸腺嘧啶和胞嘧啶 - 它们是DNA和RNA的基础。复制涉及半守则复制,其中双螺旋分裂为两个不同的链。嘌呤分子由四个氮原子和六个碳原子组成。嘧啶由一个六元环和两个氮原子和四个碳原子组成。核苷酸是DNA和RNA的构件。** DNA解旋酶**是一种在DNA复制中起重要作用的酶,而氢键在解螺旋酶放松时会破裂。这是文本的重写版本:** DNA结构** DNA的基本构件是由重复核苷酸组成的长聚合物。这些氮碱分为两个主要群体:嘌呤(腺嘌呤,鸟嘌呤)和嘧啶(胸腺胺,胞嘧啶,尿嘧啶)。酶,例如DNA聚合酶,促进了DNA分子的合成。**复制过程**在半守保持复制期间,双螺旋分裂为两个单独的链。这些链充当新DNA合成的模板。该双螺旋的“骨干”由磷酸盐组组成。**核苷酸特征**嘌呤(例如腺嘌呤和鸟嘌呤)由一个六元环组成,带有四个氮原子和六个碳原子,而嘧啶(例如胸腺胺和细胞儿童)具有两个六氮环,具有两个六氮气,带有两个硝基原子和四个碳原子的环。核苷酸是DNA和RNA的基本单位。**涉及的酶** DNA解旋酶通过放开双螺旋在复制过程中起着至关重要的作用,这最终导致链分离。**氢键**作为解旋酶放松DNA链,核苷酸之间的氢键被损坏,从而使链分开。
摘要:酶以极高的选择性催化化学转化。通过定向进化,我们可以重新编程酶以应用于生物催化和医学。在第一部分中,我将讨论我的工作,即发现、表征和设计卤化未活化 Csp3—H 键的 FeII/α-酮戊二酸依赖性酶。我解决了一种新型赖氨酸卤化酶 (BesD) 的厌氧晶体结构,发现了能够形成九种新氯化氨基酸的同源物,并开发了酶级联以产生氯化杂环、二胺、酮酸和肽。通过结构研究和高通量筛选,我研究了该酶家族中区域选择性和催化选择性的机制基础,并利用由此获得的见解来设计羟化酶以进行卤化,其活性和选择性与天然卤化酶相当。在第二个故事中,我通过定向进化开发了新型胞嘧啶碱基编辑器 (CBE)。碱基编辑器由可编程的 DNA 结合蛋白(如催化受损的 Cas9)组成,与脱氨酶融合,可实现基因组中靶位点的精确核苷酸变化。将 C•G 碱基对转化为 T•A 的 CBE 通常比其腺嘌呤碱基编辑器 (ABE) 更大,并且具有更多不良的脱靶编辑。为了开发一类保留 ABE 有利特性的新型 CBE,我使用连续蛋白质进化来进化 ABE,以便在治疗相关位点和细胞类型内进行高效的胞嘧啶碱基编辑。这些新进化的碱基编辑器克服了现有 CBE 的几个局限性,并展示了蛋白质进化在应对生物技术挑战方面的力量。
摘要单核苷酸变异 (SNV) 是影响个体性状和疾病易感性的普遍遗传因素。碱基编辑器、橡胶和铅笔基因组编辑工具的最新开发和优化现在有望实现对模型生物中的 SNV 进行直接功能评估。然而,缺乏有助于靶标预测的生物信息学工具限制了碱基编辑在体内的应用。在这里,我们为青鳉 (Oryzias latipes) 和斑马鱼 (Danio rerio) 中的腺嘌呤和胞嘧啶碱基编辑提供了一个框架,非常适合可扩展的验证研究。我们开发了一个在线碱基编辑工具 ACEofBASEs(对碱基编辑的仔细评估),通过简化 sgRNA 设计和进行脱靶评估来促进决策。我们在青鳉和斑马鱼中使用最先进的腺嘌呤 (ABE) 和胞嘧啶碱基编辑器 (CBE) 来高效编辑眼色素沉着基因和转基因 GFP 功能。编码肌钙蛋白 T 和钾通道 ERG 的基因中的碱基编辑忠实地再现了已知的心脏表型。等位基因的深度测序揭示了预期编辑的丰富性,而 ABE8e 和 evoBE4max 的插入或删除 (indel) 事件水平较低。我们最终在 F0 和 F1 中验证了先天性心脏病 (CHD) dapk3、ube2b、usp44 和 ptpn11 的新候选基因中的错义突变,这些目标基因中有基因型-表型相关性。该碱基编辑框架适用于鱼类中可获得的多种 SNV 易感性状,有助于直接验证候选基因并确定其优先级,以便进行详细的机制下游研究。
已经确定了100多种自然发生的RNA修饰,其中一些在基因表达调节中起了各种作用。[1-3]作为真核mRNA中最丰富的内部修饰,n 6-甲基拉丹代氨酸(M 6 A)受动态调节,并参与了mRNA代谢的许多方面,例如替代拼接,[4]核输出,[5]稳定性,[5]稳定性,[6] [6]转换[7,8]和dean。[9]近年来,关于其他mRNA修饰的整个转录组测序的研究也已经出现。报告的排序方法可以分组为:(1)基于抗体的M 6 A 4,M 1 A,[10-13] AC 4 C 14,15,M 5 C 16和HM 5 C 17。这些方法依赖于基于抗体的富集,但既不能达到碱基精度也无法揭示绝对修饰的部分。(2)逆转录(RT)基于停止的方法,例如基于CMC的假喹啉测序[18]和基于低DNTP的2'-O-O-ME测序。[19]尽管这些方法可以以基础分辨率检测修饰位点,但它们通常具有很高的假阳性速率,因为RT停止签名可能是非特定于特定特定的。[20](3)基于RT突变的AP促进,例如映射M 6 A,[21-24] M 7 G [25-27]和M 1 A [28]的方法,这些方法在修改的位点产生突变特征以实现单个基础分辨率,以低背景。(4)基于RT缺失的方法,例如BS诱导的定量假氨酸测序。[29,30] RNA修饰中的另一个考虑是每个位点的修饰化学计量法。修饰分数是与修饰动力学及其调节功能直接相关的生物学参数。5-甲基胞嘧啶(5MC),5-羟基甲基环胞嘧啶(5HMC)和5-甲基辛糖苷(5FC)是DNA中重要的中间体的DNA修饰,是活性DNA 5MC
相关性。完整性并易患癌症和遗传疾病。然而,绝大多数 DDR 基因突变的功能和临床相关性尚未确定。此外,人类 DDR 基因之间的相互作用网络在很大程度上仍未定义。在我的演讲中,我将讨论我们最近使用 CRISPR 依赖性胞嘧啶碱基编辑筛选的研究,这些研究发现了 DDR 基因中的数千种核苷酸变体,导致 DNA 损伤后细胞适应性发生改变。此外,我将介绍我们使用组合 CRISPR 筛选技术研究 DDR 内的遗传相互作用的工作,这使我们能够识别具有潜在临床相关性的 DDR 基因之间的新型合成致死关系。
正常细胞中的 DNA 甲基化和组蛋白修饰 DNA 甲基化是最著名、研究最全面的表观遗传机制。DNA 甲基化的主要作用是阻止基因表达。DNA 甲基化意味着在胞嘧啶核苷酸的 5′ 位置共价添加一个甲基 (-CH 3 )。1,2 负责添加甲基的酶称为 DNA 甲基转移酶 (DNMT)。哺乳动物有五种 DNMT,DNMT1、DNMT2、DNMT3a、DNMT3b 和 DNMT3L。其中,只有 DNMT1、DNMT3a 和 DNMT3b 可以将甲基从 S-腺苷甲硫氨酸 (SAM) 转移到 DNA 上。3 DNMT1 负责维持 DNA 甲基化。在复制过程中,DNMT1 转录新合成链上预先存在的甲基化标记。3 然而,在体内研究中,DNMT1 已被证明