通过物质对电子传输的抽象模拟在许多应用中使用。其中一些需要在计算时间和在广泛的电子能量中准确的模型。对于某些应用,例如放射化学和放射疗法,金属纳米颗粒增强了,希望考虑相对较低的能量电子。,我们已经在固体金属介质中实施了一个物理模型,以符合上述两个要求的固体金属介质中的低能。本文的主要目标是介绍我们的蒙特卡洛模拟的理论框架,其应用于金属金属,并与电子束照射的金箔可用数据进行了广泛的比较,用于从几个EV到90 KEV的弹丸能量。尤其是我们计算了二级电子排放,以评估我们在50 eV以下的能量时代码的准确性。即使低能电子的向后发射产率被系统地低估,也与实验达成了密切的一致性。尽管如此,在存在金纳米颗粒的情况下,诸如纳米尺度法或放射化学等纳米级应用的质量和数值效率令人鼓舞。
快速实现超高能电子治疗 CERN 和瑞士洛桑大学医院 (CHUV) 继续致力于开发创新的 FLASH 放射治疗设施。该设施基于 CERN 开发的 CLIC(紧凑型线性对撞机)加速器技术,将使用超高能电子 (VHEE) 在不到 200 毫秒的时间内治疗深层肿瘤。在如此短的时间内治疗肿瘤利用了所谓的 FLASH 效应,在产生更少副作用的同时提供等效控制。2021 年,CHUV 获得了一笔大额捐款,用于与 CERN 共同建设该设施。此外,在 CERN 的 CLEAR 测试设施进行的实验展示了如何将 VHEE 光束聚焦到深层肿瘤上,并测量了短照射时间的剂量诊断性能。
在压力下,在LA 3 Ni 2 O 7中发现了高温超导性。然而,从理论上讲,对其配对对称性尚未达成共识。通过将密度函数理论(DFT)结合,最大定位的频函数和线性差距方程与随机相位及相关性,我们发现,如果La 3 Ni 2 O 7的配对对称性为D XY,则如果其DFT频带的结构准确地由下flowdolded byborbiane twopord twopold twopord twopord twoce xy。更重要的是,我们揭示了La 3 Ni 2 O 7的配对对称性敏感地取决于两个Ni-e G轨道之间的晶体场分裂。ni-e g晶体场的略有增加分裂改变了配对对称性从d xy到s±。这种转变与费米速度和敏感性的变化有关,而费米表面的形状几乎保持不变。我们的工作强调了多轨超导体中低能电子结构对对称性的敏感依赖性,当一个人计算其配对对称性时,它在下垂过程中需要注意。
摘要:扭曲的石墨烯单和双层系统的超晶格产生了按需多体状态,例如Mott绝缘子和非常规的超导体。这些现象归因于平坦带和强库仑相互作用的组合。然而,缺乏全面的理解,因为当电场应用以改变电子填充时,低能带的结构会发生强烈的变化。在这里,我们通过应用微型注重角度分辨的光发射光谱光谱光谱光谱光谱传递到位于原位门配,我们可以直接访问扭曲的双层石墨烯(TBG)和扭曲的双重双层石墨烯(TDBG)的填充相关的低能带。我们对这两个系统的发现处于鲜明的对比:可以在简单模型中描述掺杂的TBG的掺杂依赖性分散体,将依赖于填充的刚性带转移与多体相关的带宽变化相结合。在TDBG中,我们发现了低能带的复杂行为,结合了非单调带宽变化和可调间隙开口,这取决于栅极诱导的位移场。我们的工作确立了在扭曲的石墨烯超晶格中低能电子状态的电场可调节性的程度,并且可以支持对所得现象的理论理解。关键字:扭曲的双层石墨烯,Moire ́超级晶格,扁平带,微摩尔,原位门控,带宽重归于
莫尼兹教授曾于 1997 年至 2001 年 1 月担任美国能源部副部长,负责科学、能源和核安全事务。在此之前,他于 1995 年至 1997 年担任美国科学技术政策办公室科学副主任,负责物理、生命和社会科学事务。莫尼兹教授于 1973 年至 2013 年担任麻省理工学院教师,之后被任命为能源部长。在麻省理工学院,莫尼兹是麻省理工学院能源计划 (MITEI) 的创始主任和能源与环境实验室主任。莫尼兹还于 1991 年至 1995 年和 1997 年担任麻省理工学院物理系主任,并于 1983 年至 1991 年担任贝茨线性加速器中心主任。他的物理研究主要集中在开发一个理论框架,以理解中能电子和介子与原子核的相互作用。他以优异的成绩获得了波士顿学院物理学理学学士学位,获得了斯坦福大学理论物理学博士学位,以及多个荣誉博士学位,其中一些来自欧洲大学。
摘要:瞬态电子系统代表一种新兴技术,其特点是能够在规定的运行时间后,通过设计的化学或物理过程,以受控的速率或触发时间完全或部分溶解、分解或以其他方式消失。本综述重点介绍了材料化学领域的最新进展,这些进展为瞬态电子学的一个子类——生物可吸收电子学奠定了基础,该子类的特点是能够在生物环境中重新吸收(或等效地吸收)。主要用例是设计用于插入人体的系统,以在与自然生物过程一致的时间范围内提供传感和/或治疗功能。生物吸收机制可以无害地消除设备及其对患者的相关负荷和风险,而无需进行二次移除手术。核心内容侧重于使能电子材料的化学性质,涵盖有机和无机化合物、杂化物和复合材料,以及它们在生物环境中的化学反应机制。随后的讨论重点介绍了这些材料在生物可吸收电子元件、传感器、电源以及使用专门的制造和组装方法形成的集成诊断和治疗系统中的应用。结论部分总结了未来研究的机会。
低能电子全息您的任务您将参与开发一种新型的成像技术(低能能电子全息图),该技术将用于2D晶体的原子分辨率成像,例如石墨烯和非晶样品,例如单个Macromolecules。该项目将包括以下任务:设计和构建连贯的低能电子显微镜,三个副标理,样品制备和记录全息图,以及来自全息图的样品结构的数值重建。您的个人资料您应该拥有物理学或工程学硕士学位,并具有在国际团队中进行实验研究的积极性。至少需要上级级别(CEFR B2)口语和书面英语。需要对固态物理学,相干光学和理论物理基础物质(量子力学,QED)的良好知识。编程技能(MATLAB,Python)以及电子显微镜和光学成像方面的实验经验是一个加号。实验工作将在维里根的Paul Scherrer学院进行,博士生将在苏黎世大学物理学系录取。Paul Scherrer Institute PSI是瑞士最大的自然与工程科学研究所。我们在物质和材料,能源与环境和人类健康领域进行尖端研究。通过进行基本和应用研究,我们为社会,科学和经济面临的主要挑战提供了可持续解决方案。PSI致力于对子孙后代的培训。因此,我们大约四分之一的员工是毕业后,毕业后或学徒。完全雇用了2100名员工。有关更多信息,请联系PD tatiana latychevskaia tatiana.latychevskaia@psi.ch