摘要 在本研究中,我们使用机器学习 (ML) 技术探索了碳掺杂六方氮化硼 (h-BN) 薄片的电子特性。六方氮化硼是一种被广泛研究的二维材料,具有出色的机械、热学和电子特性,使其适用于纳米电子学和光电子学应用。通过用碳原子掺杂 h-BN 晶格,我们旨在研究掺杂如何影响其电子结构,特别关注基态能量和 HOMO-LUMO 间隙。我们生成了一个包含 2076 个 h-BN 薄片的数据集,这些薄片被氢饱和并掺杂了随机变化浓度的碳原子。选择了三种典型的掺杂场景——一个、十个和二十个碳原子——进行深入分析。使用密度泛函理论 (DFT) 计算,我们确定了这些配置的基态能量和 HOMO-LUMO 间隙。使用 Behler-Parrinello 原子对称函数从优化结构生成描述符,这些描述符捕获了 ML 模型的关键特征。我们采用了随机森林和梯度提升模型来预测能量和 HOMO-LUMO 间隙,实现了较高的预测准确率,R 平方值分别为 0.84 和 0.87。这项研究证明了 ML 技术在预测掺杂 2D 材料特性方面的潜力,为传统方法提供了一种更快、更经济的替代方案,对纳米电子、储能和传感器领域的材料设计具有广泛的意义。
在1965年在Sinica Acta Physica发表的开创性作品中,Yu Lu指出,超导间隙在超导体中表现出较弱的调制较弱。在过去的十年中,一系列的高分辨率扫描隧道显微镜工作报告了某些超导体中的超导差距调制弱,并将这些现象解释为成对密度波。与Yu Lu的发现一致,Lee D H等。指出,在许多情况下,成对散射的干扰效应也会导致空间中的超导间隙调制。我们将讨论这两种机制的区别和统一,以及它们与最近的实验观察的相关性。