电子设备的正常运行可能会因系统中引入过多能量而受到干扰,无论是通过电缆传输的信号还是自由传播的高功率电磁波。由于随后发生的错误模式(如系统崩溃)很难追溯到其根本原因,因此,检测系统可以提高对关键设施中异常强场强环境的认识,从而为有效的缓解措施提供信息。我们自行设计的实验室演示器可以测量高达每米几千伏的干扰信号,根据对脉冲取平均值时低至几兆赫兹精度的频率测量,校正窄带信号中所有组件的频率响应。额外获取的元数据(如时间分辨率低至 10 纳秒的信号包络和其他测量的脉冲串特性)可用于信号取证。四通道设计可以检测传入信号的方向。边长为 19 厘米的立方体探测器可以使用电池运行 10 小时,光纤网络连接允许浏览器访问其 Web 界面。
本文的主题是一个新的设备平台,它解决了目前中子符合计数可维护仪器有限的情况,并反映了微电子学的最新进展。该平台新设备的主要功能是收集来自中子探测器的信号,处理并将它们转换为数字信息,并将其存储在数据文件中。这些设备共享一个通用的可编程硬件和工业级组件,即使在高温操作条件下也能保持高可靠性。它们嵌入了一个现场可编程门阵列,用于为多达 32 个输入通道生成带时间戳的中子信号列表。内部多线程微处理器记录数据,再现移位寄存器、多重寄存器和脉冲串记录器的功能。它同时为多平台图形用户界面提供了一个 Web 服务器。所有上述处理能力、高压和低压电源都集成在一个模块中,功耗也很容易在无人值守监控系统的密封外壳中消散。本主题平台的系统已根据安全保障会计常用的参考工具进行了验证,本文展示了这些比较的结果。
为了满足诱饵态 MDI-QKD 的安全性证明,重要的是弱相干态之间的相位随机化。我们的装置本质上是通过增益切换主激光器的性质实现这一点的:通过在每个时钟周期内定期将激光器驱动到阈值以下,持续足够的时间使激光腔中没有光子,每个脉冲都从自发辐射中增长 - 即由随机真空涨落有效地播种。通过将每个发射器中的未衰减脉冲串(每个脉冲的持续时间为 75 ps,如补充图 1a 所示)通过非对称马赫-曾德尔干涉仪 (AMZI) 来确认这一点,其中一条臂延迟以干扰连续的相干态。在光电二极管和示波器上测量输出强度,然后进行处理以形成 10 5 个脉冲中心的输出强度直方图。直方图(补充图 1b)展示了均匀分布的随机相对相位 φ 的脉冲干涉预期呈现 1 + cos(φ) 形状,其中考虑了实验的不确定性[1]。
泵浦固态 (DPSS) 主振荡器放置在密封的单片块中,产生高重复率脉冲串 (90 MHz),单脉冲能量低至几 nJ。二极管泵浦放大器用于将脉冲放大至 30 mJ 或高达 40 mJ 的输出。高增益再生放大器的放大系数接近 10⁶。在再生放大器之后,脉冲被引导至多通功率放大器,该放大器经过优化,可从 Nd:YAG 棒中高效提取存储的能量,同时保持近高斯光束轮廓和低波前畸变。输出脉冲能量可以大约 1% 的步长进行调整,而脉冲间能量稳定性在 1064 nm 时保持在小于 0.5% rms。安装在恒温炉中的角度调谐 KD*P 和 KDP 晶体用于第二、第三和第四谐波的产生。谐波分离器保证引导至不同输出端口的每个谐波具有高频谱纯度。
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53
为了进一步避免声音噪声,该电路通过将跳周期模式期间的突发频率限制在 800 Hz 的最大值来防止开关频率 进入可听范围。这是通过一个定时器实现的,该定时器在安静的跳周期工作模式期间被激活。在该计时器计数结束 前,不允许打开开关周期。随着输出功率的降低,开关频率降低,一旦达到 25 kHz ,即达到进入入阈值并进入跳 周期模式。关闭开关管,停止开关周期,一旦开关停止, FB 将上升。一旦 FB 越过跳周期退出阈值(这时仍然为 跳周期工作模式),则打开驱动脉冲。此时,一个 1.25 ms 的计时器 tquiet 与一个计数到 3 的计数器一起启动。下 次 FB 电压降至跳入阈值以下时,只要计数到 3 个驱动脉冲,驱动脉冲就会在当前脉冲结束时停止(至少打开 3 个 开关脉冲)。在计时器计时结束之前不允许再次启动,即使先达到跳周期的退出阈值。需要注意的是,计时器不会 强制下一个循环开始,如果在计时器计时结束时未达到跳周期的退出阈值,则驱动脉冲将等待 FB 达到跳周期退出 阈值。这意味着在空载期间,每次开关至少会有 3 个驱动脉冲,脉冲串间隔周期可能远长于 1.25 ms 。该工作模式 有助于提高空载条件下的效率。 FB 电压必须升高超过 1 V ,才退出跳周期模式。如果在 tquiet 计时结束前 FB 电压 大于 1V ,则驱动脉冲将立即恢复,即控制器不会等待计时器结束。图 4 提供了一个安静跳周期工作原理的示例。
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部
早在1959年,理查德·费曼在题为“底部有足够的空间”的演讲中就提到了层状材料的概念。[1] 然而直到几十年后的今天,我们似乎才通过坚持不懈的努力,对二维材料这个神秘的物种有了更清晰的认识。[2] 对于具有纳米结构的二维材料,在平面上确定传热和电荷时会出现独特的物理奇异性,这使得它们引起了从超快光子学[3–9]电子/光电子器件[10–22]高性能传感器[23–30]生物医学[31–42]到光调制[43–51]等领域的广泛关注。 在过去的几年中,二维材料的整体格局不仅得到了极大的扩展,而且在其开发和应用方面也得到了很大的创新。 其中最引人注目的应用是非线性光学,它掀起了激光创新的狂潮。在众多现有的超短脉冲产生技术中,基于可饱和吸收体(SA)的被动锁模光纤激光器(MLFL)由于具有光束质量好、结构紧凑、成本低廉、兼容性好等优点,成为实现超短脉冲最有效的途径之一。虽然可饱和吸收体的发展经历了染料、半导体可饱和吸收镜(SESAM)等,但自从石墨烯材料的成功制备和应用以来,在光纤激光器中掀起了基于二维材料的可饱和吸收体制备研究的热潮。由于二维材料的光学非线性,基于二维材料的可饱和吸收体可以周期性地调制激光腔内环流光场,引起大量纵模发生相位振荡,从而在时间域上形成有规律的短脉冲串。非线性吸收机理主要由泡利不相容原理引起,使得材料在强光作用下,当有大量电子处于上激发态时,瞬间吸收较小。自石墨烯问世以来,更多的二维材料被认可并在激光领域得到应用。到目前为止,研究热点主要集中在几种代表性材料或与它们相关的一些异质结材料上,包括1)石墨烯;2)拓扑绝缘体(TIs);3)黑磷
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
理解复杂的神经回路及其与特定行为的关系需要对神经元亚型进行精确的时间和空间调节。非遗传近红外光刺激是最有前途的大脑非侵入性神经接口技术之一。1-5 最近,脉冲红外神经刺激 (INS) 技术已被引入作为一种能够安全且可逆地调节神经活动的方法。1 与其他波长的红外刺激(例如 808 nm、2 980 nm、3 5.6 μ m 4、5 )引起的效应相反,脉冲传输 ∼ 1.875 μ m 红外波长会导致局部热量传输并被水快速吸收。6 当通过 200 μ m 光纤以短脉冲串(0.25 ms、200 Hz、0.5 s)传输时,这种高度聚焦(亚毫米)光学方法为灵长类动物皮层中的功能性柱特异性刺激提供了一种独特的方法。 7 因此,INS 相较于传统电刺激的优势包括高空间选择性、非接触式传递,以及对于灵长类动物和人类应用而言更为重要的一点,即无需事先表达视蛋白即可对大脑部位进行神经调节。8、9 此外,凭借这种靶向光纤刺激的精确度和 MRI 兼容性,局部 INS 结合 MRI 可用于灵长类动物大脑网络的体内映射 10-12,并有望用于对清醒行为猴子进行神经调节。虽然这些应用已显示出对体内回路神经调节的巨大前景,但其作用机制或对单个细胞类型的影响目前仍然知之甚少。现在有越来越多的证据表明 INS 会导致神经调节。通过电生理学、内在信号光学成像和体内钙成像评估,INS 已被证明可在麻醉啮齿动物中诱导兴奋性和抑制性神经元反应。 13、14 INS 对麻醉恒河猴视觉皮层产生了典型的视觉诱导皮层内在信号 7 的反应,而且导致功能匹配的眼部优势域的选择性调节,与局部皮层-皮层连接的激活一致。超高场 MRI 中的 INS 可激活恒河猴解剖学预测的中尺度全球大脑部位,这进一步表明投射细胞(兴奋性锥体神经元)被 INS 激活。10 – 12 这些 INS 诱导的反应已被证明具有强度和持续时间依赖性。尽管有这些令人信服的证据,但直接用电生理学方法展示神经元反应仍然具有挑战性。一个被称为贝克勒尔效应的问题在于,记录电极的直接加热会通过电极中的热诱导电流污染神经元反应。Cayce 等人。使用同时在麻醉啮齿动物体内使用 INS 进行钙成像,并观察大脑表面皮质星形胶质细胞和顶端树突中的细胞内钙信号。14 Kaszas 等人使用遗传编码的钙指示剂 Syn-GCaMP6f 进行双光子钙成像,并表明 INS 在麻醉小鼠皮质体内的神经元中诱导微弱的细胞内钙信号。15 到目前为止,我们对神经元反应的理解仍然处于初级阶段。其潜在的作用机制尚不清楚 16 – 23,并且在细胞水平上对不同神经元亚型以及体内不同生理状态的反应的影响仍然缺乏。特别是,尽管 fMRI 研究表明 INS 可在远处皮质部位诱导 BOLD 激活,但对于细胞回路对这种功能连接结果的贡献知之甚少。为了研究 INS 如何影响体内单个神经元并检查对不同细胞亚型的影响,我们在小鼠体感皮层 2/3 层以单细胞分辨率对 INS 的神经元钙反应进行了双光子成像。使用特定的遗传编码钙指示剂 GCaMP6 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的意义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。