基于空腔的X射线自由电子激光器(CBXFEL)是完全相干X射线源开发的未来方向。cbxfels由一个低射精的电子源,一个带有几个失调器和chicanes的磁铁系统以及一个X射线腔。X射线腔存储并循环X射线脉冲,以与电子脉冲重复相互作用,直到FEL达到饱和。CBXFEL腔需要低损坏波前的光学组件:接近100%的反射性X射线钻石钻石bragg反射晶体,远对偶联设备,例如薄钻石膜或X射线膜,以及无X射线光栅,以及不含焦点的聚焦元素。在Argonne国家实验室,SLAC国家加速器实验室和Spring-8的协作CBXFEL研究与开发项目的框架中,我们在这里报告了CBXFEL腔的X射线光学组件的设计,制造和表征,包括高度反射性的钻石晶体液体,包括钻石晶体的薄膜和薄膜液体,包括imondivelivity单色。所有设计的光学组件都在高级光子源上进行了充分表征,以证明其对CBXFEL腔应用的西装。
E-3 哨兵是一种机载预警和控制系统 (AWACS) 飞机,可提供空中战术部队指挥官所需的全天候监视、指挥、控制和通信。AWACS 已在沙漠风暴、盟军和最近的持久自由等战时行动以及正在进行的维和和人道主义努力中得到验证,是当今世界上首屈一指的空战指挥和控制飞机。诺斯罗普·格鲁曼电子系统公司 (ES) 在机载预警 (AEW) 雷达的开发和生产方面有着悠久的历史。作为波音公司在 E-3 上使用的 AN/APY-1 和 AN/APY-2 雷达系统以及在 E-767 上使用的 AN/APY-2 雷达系统的供应商,ES 继续在机载应用雷达技术开发方面处于领先地位。AWACS S 波段(E-F 波段)监视雷达安装在飞机机身顶部的旋转圆顶中,能够以 10 秒为间隔对 AWACS 周围超过 200,000 平方英里(500,000 平方公里)或所有方向超过 250 英里(400 公里)的空域进行勘察。雷达使用高脉冲重复频率 (PRF) 脉冲多普勒波形来区分飞机目标和杂波回波。超低旁瓣天线是用于在所有地形(包括城市和山区)上获得性能的重要技术元素。旋转圆顶的机械旋转通过 360 度方位角扫描天线波束,以覆盖所有方向的目标。天线波束的电子扫描用于测量目标高度和
本文深入探讨了人工智能在合成孔径雷达 (SAR) 技术中的最新进展,重点介绍了欧洲航天局 (ESA) 支持的发展。讨论涵盖了人工智能在 SAR 数据中的应用进展,特别强调了下一代 SAR 有效载荷的机载数字处理功能。先前的 SAR 任务,如 Sentinel-1,在其有效载荷中加入了传感通道,用于校准、特性描述和监控航天器有效载荷。强大的机载处理设备和增加的机载内存为开发认知微波仪器提供了新的可能性,特别是雷达和合成孔径雷达,它们可以在没有地面特定指令的情况下触发自主动作。认知雷达被定义为一种结合了自适应和智能信号处理的系统。在卫星中,示例包括根据监测场景适应操作模式或仪器配置,调整波形参数(如频率、脉冲宽度、脉冲重复间隔、发射功率)直至发射和接收天线方向图或卫星平台的指向。本文重点介绍了与具有机载处理能力的下一代有效载荷的认知雷达应用相关的最新技术突破和持续发展,包括自适应压缩技术的进步、原始雷达数据的目标检测和其他由机器学习实现的技术。此外,它还深入探讨了数字信号处理、数字波束成形和信号处理技术领域的持续研究和开发活动,旨在实现更灵活和自适应的 SAR 有效载荷。这些元素被视为认知系统及其在未来任务中的应用的基石。除了概述当前的技术状况外,本文还探讨了人工智能在 SAR 任务中的潜在未来应用。人工智能与合成孔径雷达系统的结合有望提高合成孔径雷达的性能指标、减少延迟,从而实现地球观测和遥感领域的创新下游应用。
电负性电感耦合等离子体 (ICP) 用于微电子工业中半导体制造的导体蚀刻。天线功率和偏置电压的脉冲化提供了额外的控制,以优化等离子体 - 表面相互作用。然而,由于在前一次余辉结束时电子密度较低,因此脉冲 ICP 在功率脉冲开始时易受电容到电感模式转变的影响。电容 (E) 到电感 (H) 模式的转变对前一次余辉结束时等离子体的空间结构、电路(火柴盒)设置、操作条件和反应器配置(包括天线几何形状)很敏感。在本文中,我们讨论了通过计算研究的结果,研究了在 Ar/Cl 2 和 Ar/O 2 气体混合物中维持的脉冲 ICP 中的 E - H 跃迁,同时改变操作条件,包括气体混合物、脉冲重复频率、功率脉冲的占空比和天线几何形状。在 Ar/Cl 2 混合气体中维持的脉冲 ICP 容易发生显著的 E – H 跃迁,这是因为余辉期间与 Cl 2 发生热解离附着反应,从而降低了预脉冲电子密度。这些突然的 E – H 跃迁会从等离子体边界(尤其是天线下方)形成的鞘层发射静电波。在 Ar/O 2 混合气体中观察到的更平滑的 E – H 跃迁是由于缺乏对 O 2 的热电子附着反应,导致功率脉冲开始时的电子密度更高。讨论了入射到晶片和天线下方的介电窗口上的离子能量和角度分布 (IEAD)。天线的形状影响 E – H 跃迁和 IEAD 的严重程度,天线具有面向等离子体的较大表面积,会产生较大的电容耦合。通过将计算出的电子密度与实验测量值进行比较来验证模型。
尽管自第一版出版以来,雷达的基本原理几乎没有变化。新的雷达功能不断发展,雷达技术和实践也不断改进。这种发展使得必须进行大量修订,并引入原版中没有的主题。其中一个主要变化是对 MTI(移动目标指示)雷达的处理(第4 章)。已添加的大多数基本 MTI 概念在第一版出版时就已经为人所知,但它们尚未出现在公开文献中,也没有在实践中得到广泛应用。将其纳入第一版将主要是学术性的,因为当时可用的模拟延迟线技术无法构建理论上可行的复杂信号处理器。然而,后来数字技术的进步(最初是为雷达以外的应用而开发的)已使基本 MTI 理论所指出的多个延迟线消除器和多个脉冲重复频率 MTI 雷达得以实际实施。自动检测和跟踪,或称 ADT(第 5.0 和 10.7 节)是另一项重要发展,其基本理论已为人所知,但其实际实现必须等待数字技术的进步。ADT 的原理在 20 世纪 50 年代初得到验证,使用真空管技术,作为麻省理工学院林肯实验室开发的美国空军 SAGE 防空系统的一部分。这种形式的 ADT 体积庞大、价格昂贵且难以维护。然而,20 世纪 60 年代末固态微型计算机的商业化使 ADT 变得相对便宜、可靠且体积小,因此几乎可以用于任何需要它的监视雷达。另一个得到很大发展的雷达领域是电子控制相控阵天线。在第一版中,雷达天线是主题或单独的一章。在这一版中,有一章介绍了传统雷达天线(第7 章),还有一章介绍了相控阵天线(第8 章)。用一章来介绍阵列天线更多的是出于兴趣,而不是对广泛应用的认可。有关雷达杂波的章节(第章)已重新组织,以包括在杂波存在下检测目标的方法。一般而言,在杂波背景中检测目标所需的设计技术与在噪声背景中检测目标所需的设计技术有很大不同。当前版本中新增或发生重大变化的其他主题包括低角度跟踪、“同轴”跟踪、固态射频源、镜面扫描天线、天线稳定、相控阵的计算机控制、固态双工器、CF AR、脉冲压缩、目标分类、合成孔径雷达、超视距雷达、对空监视雷达、测高仪和 30 雷达以及 ECCM。双基地雷达和毫米波雷达也包括在内,尽管它们的应用已经