功能梯度,其中响应特性在大脑区域逐渐变化,作为大脑的关键组织原理。使用静止状态和自然观看范式的最新研究表明,这些梯度可以通过“连接映射”分析从功能连接模式重建。然而,局部连接模式可能会被数据分析期间的空间自相关所混淆,例如,通过坐标空间之间的空间平滑或插值。在这里,我们研究了这种混杂是否可以产生虚幻的连接梯度。我们生成了包含受试者功能体积空间中随机白噪声的数据集,然后选择使用空间平滑和/或将数据插入到不同的体积或表面空间中。平滑和插值引起的空间自相关能力用于连接映射,以在许多大脑区域产生体积和表面的局部梯度。此外,这些梯度似乎与从真实自然观看数据中获得的梯度高度相似,尽管在某些情况下从真实数据和随机数据产生的梯度在统计上是不同的。我们还重建了整个脑的全球梯度 - 尽管这些梯度似乎不太容易受到人工空间自相关的影响,但再现先前报道的梯度的能力与分析管道的特定特征紧密相关。这些发现意味着需要谨慎解释连接梯度。这些结果表明,先前报道的连接映射技术鉴定出的梯度可能会被分析期间引入的人工空间自相关所混淆,在某些情况下,在不同的分析管道中可能会繁殖很差。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 20 日发布。;https://doi.org/10.1101/2024.12.19.629459 doi:bioRxiv preprint
大脑需要在神经元和大规模大脑区域之间进行有效的信息传递。大脑连接遵循可预测的组织原则。在细胞层面,较大的超颗粒锥体神经元具有更大、更多分支的树突树、更多突触,并执行更复杂的计算;在宏观尺度上,区域到区域的连接显示出多样化的架构,高度连接的枢纽区域促进了复杂的信息整合和计算。在这里,我们探讨了这样一种假设,即大规模区域到区域连接的分支结构遵循与神经元尺度类似的组织原则。我们检查了五个人类捐赠者大脑(1 名男性,4 名女性)的 10 个皮质区域的超颗粒锥体神经元(300 1)基底树突树的微尺度连接。树突复杂性被量化为分支点数、树长、树突棘数、树突棘密度和整体分支复杂性。高分辨率弥散加权 MRI 用于构建皮质皮层布线的白质树。使用与树突树相同的方法来检查所得白质树的复杂性,结果表明,异模关联区域具有比主要区域更大、更复杂的白质树(p,0.0001),并且宏观尺度复杂性与微观尺度测量并行,包括输入数量(r=0.677,p=0.032)、分支点(r=0.797,p=0.006)、树长度(r=0.664,p=0.036)和分支复杂性(r=0.724,p=0.018)。我们的研究结果支持整合理论,即大脑连接遵循神经元和宏观尺度上的类似连接原则,并为研究大脑条件下多组织层面的连接变化提供了一个框架。
1伦敦帝国学院,英国伦敦帝国学院2先知设计,南旧金山,美国加利福尼亚州,美国3 F. Hoffmann-la Roche Ltd,巴塞尔,瑞士,瑞士4默克公司,南旧金山,加利福尼亚州南旧金山5美国马萨诸塞州剑桥大学的自然和人工智能,美国马萨诸塞州剑桥市9号大街和哈佛大学,美国马萨诸塞州剑桥市10哈佛大学数据科学倡议,美国马萨诸塞州剑桥
人类和其他动物具有将自己的位置从一个空间参考框架转换到另一个空间参考框架的非凡能力。在自上而下和第一人称视角之间无缝移动的能力对于导航、记忆形成和其他认知任务非常重要。有证据表明内侧颞叶和其他皮质区域有助于实现此功能。为了了解神经系统如何执行这些计算,我们使用变分自动编码器 (VAE) 从机器人模拟的自上而下视图重建第一人称视图,反之亦然。VAE 中的许多潜在变量具有与神经元记录中看到的类似的响应,包括位置特定活动、头部方向调整和与本地物体距离的编码。从自上而下的视图重建第一人称视图时,位置特定响应很突出,但从第一人称视图重建自上而下的视图时,头部方向特定响应很突出。在这两种情况下,模型都可以从扰动中恢复,而无需重新训练,而是通过重新映射。这些结果可以促进我们对大脑区域如何支持视点联系和转换的理解。
摘要:经颅局灶性刺激(TFS)是一种具有神经保护作用的非侵入性神经调节策略。6-羟氧化胺(6-OHDA)诱导了在多巴胺能,5-羟色胺能和组胺能系统中产生修饰的黑质系统的神经变性。进行了本研究以测试TFS的重复应用是否避免了纹状体内注射6-OHDA引起的生物胺的变化。实验旨在确定注射6-OHDA的动物大脑中多巴胺,5-羟色胺和组胺的组织含量,然后每天接受TFS 21天。在6-OHDA注射的一侧评估了在大脑皮层,海马,杏仁核和纹状体,ipsi-and ipsi-ipsi-和对侧的生物胺的组织含量。将获得的结果与单独使用6-OHDA,TFS和假手术组的动物进行了比较。本研究表明,TFS并未避免纹状体中多巴胺组织含量的变化。然而,TFS能够避免在评估的不同大脑区域中多巴胺,5-羟色胺和组胺的组织含量中6-OHDA引起的几种变化。有趣的是,单独的TF并未引起评估的不同大脑区域的重大变化。本研究表明,重复的TFS避免了6-OHDA诱导的生物胺的变化。TF可以代表一种新的治疗策略,以避免6-OHDA引起的神经毒性。
大脑的变化如何导致学习?要回答这个问题,请考虑一个人工神经网络(ANN),其中学习通过优化给定的目标或成本功能进行进行。此“优化框架”可能会提供有关大脑学习方式的新见解,因为通过训练以执行相同任务的ANN可以概括神经活动的许多特质特征。尽管如此,在整个学习过程中神经种群活动如何变化的关键特征无法轻易根据视觉来解释,并且不是ANN的特征。在这里,我们详细介绍了以下三个功能:(1)整个学习中神经变异性的影响,(2)即使在简单任务期间也使用多个学习过程,以及(3)存在大型任务 - 非专业活动的变化。我们建议了解这些特征在大脑中的作用将是使用优化框架来描述生物学习的关键。
图 1:将语言处理的人工神经网络模型与大脑语言网络的活动进行比较。我们测试了不同模型预测人类在语言理解过程中神经活动测量值的能力。候选模型包括简单的嵌入模型、更复杂的循环和变压器网络。刺激包括句子、段落和故事,并且 1) 输入模型,2) 呈现给人类参与者(视觉或听觉)。然后,1) 从模型中捕获由此产生的内部表征,2) 使用 fMRI 或 ECoG 从人类那里记录下来。为了比较模型和人类表征,我们对 80% 的刺激的相应人类测量值对模型表征进行了回归,然后将模型对保留的 20% 刺激的预测与保留的人类数据进行比较,并使用 Pearson 相关性(交叉验证 5 倍),得出每个模型数据对的相似度分数。
运动纤毛广泛分布于动物和植物界,表现出对其生理至关重要的复杂集体动力学。它们的协调机制尚不明确,之前的研究主要集中在藻类和原生生物上。我们在此研究脑室多纤毛细胞中纤毛摆动的牵引。对受控振荡外部流的响应表明,与主动摆动的纤毛频率相似的流动可以牵引纤毛振荡。我们发现这种牵引所需的水动力在很大程度上取决于每个细胞的纤毛数量。与最近在衣藻中观察到的情况相反,纤毛较少的细胞(最多五个)可以在与纤毛驱动流相当的流量下被牵引。实验趋势通过一个模型定量描述,该模型考虑了密集纤毛的流体动力学筛选和鞭毛摆动的化学机械能量效率。纤毛与流体动力学相互作用的最小模型的模拟显示出在纤毛中观察到的相同趋势。
Hana Nedozrálová 1 , Pavel Křepelka 1 , Muhammad Khalid Muhammadi 2 , Žilka Norbert Žilka 2 , Jozef Hritz 1 1 Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 2 Institute of Neuroimmunology, Slovak Academy of Science, Bratislava, Slovakia Background包括。旨在使病理tau蛋白聚集体的积累是许多神经退行性疾病的标志,包括阿尔茨海默氏病。神经元中错误折叠的tau的积累是有毒的,它破坏了细胞生理学,导致神经元死亡和tau在整个大脑中的传播。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。 尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。 我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。 可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。 我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。 Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。导致此海报,我们介绍了原位可视化工作流程,并展示了初步的生物对比冷冻式纤维/SEM/SEM图像以及受tauopathy影响的鼠大脑组织的层状。结论我们表明,新型的生物对比度冷冻质量fib/sem成像工作流程可用于无需化学固定的病理组织的超微结构表征,并且与lamella callout和situ Cryo-et的结合为揭示神经变性细胞的细节提供了出色的工具。承认这项工作已获得捷克科学基金会(22-15175i)的资金。我们承认Cero-Electron显微镜和层析成像核心设施CIISB的CEITEC MU,指导CZ Center,由Meys CR(LM2023042)和欧洲区域发展基金会“ UP CIISB”(No.cz.02.1.01/0.0/0.0/18_046/0015974)。