大麻二酚(CBD)是大麻植物中发现的大约数百种天然大麻素之一,最多可能占该植物提取物的40%。但是,《联盟法》中没有适用于化妆品领域的CBD的定义。根据谁的药物依赖专家委员会(ECDD),CBD是大麻植物中发现的天然大麻素。 它是一种21-碳苯酚化合物,在从大麻二醇酸前体中脱羧后形成,尽管也可以通过合成生产”。 2根据ECDD,CBD是一种非精神活性大麻素,没有表现出任何滥用或依赖潜力的作用3。 此外,ECDD还指出,已经发现CBD的毒性相对较低,但仍强调并非所有潜在影响都已被探索。根据谁的药物依赖专家委员会(ECDD),CBD是大麻植物中发现的天然大麻素。它是一种21-碳苯酚化合物,在从大麻二醇酸前体中脱羧后形成,尽管也可以通过合成生产”。2根据ECDD,CBD是一种非精神活性大麻素,没有表现出任何滥用或依赖潜力的作用3。此外,ECDD还指出,已经发现CBD的毒性相对较低,但仍强调并非所有潜在影响都已被探索。
在高等植物中,GABA 主要通过一条称为 GABA 分流的短途径代谢,谷氨酸脱羧酶(GAD)催化谷氨酸不可逆脱羧生成 GABA 5,6。GAD 具有一个额外的 C 末端残基,称为钙调蛋白(CaM)结合结构域(CaMBD)。体外研究表明,低 pH 或 Ca 2+ /CaM 与 CaMBD 结合可刺激 GAD 活性 7,8,9。此外,转基因研究表明,去除 CaMBD 会导致植物中 GABA 积累更高 10,11,12,13。因此,人们认为在没有 Ca 2+ /CaM 的情况下,CaMBD 充当负调节/自抑制结构域,并且通过 Ca 2+ /CaM 与 CaMBD 结合可解除负调节。因此,我们的目标是通过 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 去除 CaMBD
胆管癌 (CCA) 是一组预后较差的异质性肝胆肿瘤。晚期 CCA 传统上根据解剖位置细分为肝内胆管癌 (iCCA) 和肝外胆管癌 (eCCA)。最近,基因组学的进展部分揭示了 CCA 复杂的分子图景,为新的治疗机会提供了新的见解,并为 40% - 55% 的 CCA 患者开启了精准肿瘤学时代 (1)。在这些推定可采取行动的改变中,15% 的 iCCA 和 < 5% 的 eCCA (2 - 4) 中检测到异柠檬酸脱氢酶 (IDH1/2) 基因突变。 IDH1/2 突变也见于其他癌症,包括低级别胶质瘤 (80%)、急性髓性白血病 (20%) 和中心性软骨肉瘤 (80%) (5, 6)。大多数 IDH1 和 IDH2 点突变分别发生在残基精氨酸 132 (R132) 或 172 (R172)。IDH 是三羧酸循环中催化异柠檬酸脱羧的必需酶
中空碳材料因其独特的多孔结构和电性能被视为催化和电化学储能中重要的支撑材料。本文以铟基有机骨架InOF-1为骨架,在惰性氩气下通过纳米氧化铟与碳基质的氧化还原反应形成铟颗粒。具体地说,通过在脱羧过程中结合铟的熔融和去除,原位获得了一种多孔中空碳纳米管(HCNS)。合成的HCNS具有更多的电荷活性位点以及短而快的电子和离子传输通道,以其独特的内部空腔和管壁上相互连通的多孔结构,成为碘等电化学活性物质的优良载体。此外,组装的锌碘电池(ZIBs)在1 A g -1 时提供234.1 mAh g -1 的高容量,这确保了电解质中碘物质的吸附和溶解达到快速平衡。基于HCNS的ZIBs的倍率性能和循环性能得到大幅提升,表现出优异的容量保持率,并表现出比典型的单向碳纳米管更好的电化学交换容量,使HCNS成为新一代高性能电池的理想正极材料。
利用微生物从碳水化合物中生产大宗化学品和生物燃料,与低成本的化石燃料生产形成竞争。为了限制生产成本,需要高滴度、高生产率,尤其是高产量。这就要求参与产品形成的代谢网络必须是氧化还原中性的,并保存代谢能量以维持生长和维持。在这里,我们回顾了可用于节约能源和防止不必要能量消耗的机制。首先,概述了现有糖基发酵过程中的 ATP 生产。描述了底物水平磷酸化 (SLP) 和所涉及的激酶反应。基于这些反应的热力学,我们探索是否可以将其他激酶催化反应应用于 SLP。离子动力的产生是另一种节约代谢能量的方法。我们举例说明了碳碳双键还原、脱羧和氧化还原辅因子之间的电子转移如何支持离子动力的产生。从更广泛的角度来看,讨论了氧化还原电位与能量守恒之间的关系。我们描述了如何通过使用 CoA 转移酶和转羧酶来减少辅酶 A (CoA) 和 CO 2 结合所需的能量输入。糖和发酵产物的运输可能需要代谢能量输入,但可以使用替代运输系统来
外星二氨基甲基氨酸氨基氨酸(D / L -DFMO)是Eocaryotic多胺生物合成中的第一个酶ODC(鸟氨酸脱羧酶)的抑制剂。D / L -DFMO是哺乳动物细胞生长和发育的有效抗寄生虫和抑制剂。纯化的人类ODC-catalysed鸟氨酸脱羧是高度立体的。但是,两个DFMO对映异构体以时间和浓度依赖性方式支持ODC活性。ODC活性在用L - 或D -DFMO和透析治疗后无法恢复以去除自由抑制剂。对于d,l-和d / l -dfmo,酶 - 抑制剂络合物形成的抑制剂解离常数(K d)值分别为28.3 + - 3.4、3.4、1.3 + - 0.3和2.2 + - 0.4 µm。这些K d值的差异在统计学上是显着的(p <0.05)。对于不可逆转的步骤的抑制剂灭活常数(K INACT)分别为0.25 + - 0.03、0.15 + - 0.03和0.15 + - 0.15 + - 0.03 min -1,对于D,L-和D / L -DFMO。这些后一个值在统计学上没有显着差异(p> 0.1)。d -dfmo是一种更有效的抑制剂(IC 50〜7.5 µm)。