sylvain.poulet@cea.fr 摘要 — 超薄基板上柔性薄膜电子设备的出现是由开发与前端和后端工艺完全兼容的替代处理方法的需求所驱动。这项研究的目的是提出一种新的超薄玻璃基板处理方法,该方法基于直接玻璃-玻璃键合和室温剥离脱粘。通过在超薄玻璃基板(<100µm)上实现薄膜电池(<20µm)来评估这一概念。为了键合,将超薄玻璃层压在厚的载体玻璃(>500µm)上,没有中间层。薄膜电池堆栈采用连续物理气相沉积法制造,温度高达 400°C。脱粘过程在室温下通过机械剥离层压在薄膜电池上的封装膜完成。结果,脱粘后超薄玻璃(<100µm)没有任何裂纹的迹象。此外,脱粘过程之前和之后进行的电化学阻抗谱 (EIS) 和恒电流循环表明器件性能略有稳定。
关键词:光子剥离、临时键合和解键合、薄晶圆处理、键合粘合剂 摘要 临时键合和解键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子解键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统解键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来解键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~300 µs)内产生高强度光脉冲(高达 45 kW/cm 2 ),以促进脱粘。引言近年来,三维 (3D) 芯片技术在微电子行业中越来越重要,因为它们具有电路路径更短、性能更快、功耗和散热更低等优势 [1]。这些技术涉及异质堆叠多个减薄硅 (Si) 芯片(<100 µm)并垂直互连以形成三维集成电路 (3D-IC) [2]。在现代 3D 芯片技术中,可以使用硅通孔 (TSV) 来代替传统的引线键合技术在硅晶圆之间垂直互连。减薄晶圆使得这些 TSV 的创建更加容易 [3, 4]。为了便于处理薄硅晶圆,需要对硅晶圆进行临时键合。在临时键合工艺中,次级载体晶圆充当主器件晶圆的刚性支撑,并利用两者之间的粘合层将两个晶圆粘合在一起。晶圆粘合在一起后,即可进行背面研磨和后续背面处理。背面处理后,减薄后的晶圆和载体堆叠
2 2401 Brewer Driver,Rolla,MO 65401,美国 * 通讯作者的电子邮件:vikram.turkani@novacentrix.com 摘要 临时键合和脱键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔 (TSV) 和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子脱键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统脱键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来脱键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~100 µs)内产生高强度光脉冲(高达 45 kW/cm 2 )以促进脱粘。通过成功将减薄(<70 μm)硅晶圆从玻璃载体上脱粘,证明了 PDB 在 TB/DB 工艺中的可行性。对减薄晶圆和载体的脱粘后清洁进行了评估。通过每个闪光灯提供均匀、大面积照明(75 mm x 150 mm),并且能够串联灯以增加 PDB 工具的照明面积,PDB 方法为晶圆级和面板级封装技术提供了一种高通量、低成本的脱粘解决方案。关键词光子剥离、闪光灯、临时键合和脱粘、临时键合材料、晶圆级封装。
[1]《超声波焊接》,第 8 章,载于:《焊接手册》第 9 版第 3 卷,《焊接工艺》,第 2 部分,美国焊接学会,迈阿密,2007 年。[2] AA Fedulova、Yu.A. Ustinov、EP Kotov、VP Shustov 和 ERYavich,《多层印刷电路板技术》,无线电和通信,莫斯科,1990 年(俄罗斯语)。[3] QJ Chen、A. Pagba、D. Reynoso、S. Thomas 和 HJ Toc,《铜线及其他 - 银线是铜的替代品吗?》 , 载于:2010 年第 12 届电子封装技术会议,IEEE,2010 年,第 591-596 页。[4] P. Liu、L. Tong、J. Wang、L. Shi 和 H. Tang,铜线键合技术的挑战与发展,微电子可靠性,2012 年,第 52 卷,第 6 期,第 1092-1098 页。[5] ZW Zhong,使用铜线的引线键合,微电子国际,2009 年,第 26 卷,第 1 期,第 10-16 页。 [6] A. Shah、T. Rockey、H. Xu、I. Qin、W. Jie、O. Yauw 和 B. Chylak,《银线先进引线键合技术》,载于:2015 IEEE 第 17 届电子封装与技术会议 (EPTC),IEEE,2015 年,第 1-8 页。[7] ZW Zhong,《使用铜线或绝缘线的引线键合概述》,《微电子可靠性》,2011 年,第 51 卷,第 1 期,第 4-12 页。
GST的结论标志着巴黎野心周期中的关键点。作为当事方采取国内缓解措施的义务的一部分,其目的是实现其NDC,23每五年进行一次NDC 24(在COP30 25之前的下一个9-12个月)进行NDC进行交流,并确保每个连续的NDC“反映其最高的野心”,26党也必须提供重要信息。正如Katowice在Katowice的COP中规定的那样,当事方应提供特定的信息,以实现“清晰,透过的和理解和理解” 27和“有关如何通过[GST]的结果告知其[NDCS]的准备信息。” 28商品及服务税的结果,包括其关键政策信号,必须通过其NDC来告知当事方的实施工作。要求各国在2025年第一季度提交的新NDC必须包括有关当事方对这些信号采取行动的信息。到2025年,COP28对气候行动的影响的程度将成为重点。
摘要:从Z10 Microcode的最新更新开始,以及ICSF,FMID HCR7770,IBM加密硬件的新支持,支持三种键。本文介绍了清晰键,安全键和受保护的键之间的基本差异,并且是对硬件如何为安全键提供额外保护的介绍。了解这三个区域之间的差异将有助于设计正确的加密解决方案并确定加密工作的硬件要求。加密是为了保护数据的过程。使用加密算法(一系列步骤)将数据拼写,该算法由密钥控制。键是输入算法的二进制数字序列。加密的安全性依赖于保持密钥的价值为秘密。在密码学中,必须确保所有对称密钥和公共/私钥对的私钥以保护数据。对于对称键,需要保护钥匙值,以便只有两个交换加密数据的双方才能知道键的值。DES,TDE和AES算法已发布,因此键提供了安全性,而不是算法。如果第三方可以访问密钥,则可以像预期的接收者一样轻松地恢复数据。对于非对称键,必须保护私钥,以便只有公共/私钥对的所有者才能访问该私钥。公共密钥可以并且将与将向键盘所有者发送加密数据的合作伙伴共享。安全的密钥硬件要求加载主密钥。在系统z加密环境中定义键为安全键时,该密钥将由另一个称为主键的密钥保护。IBM安全密钥硬件提供篡改感应和篡改响应环境,在攻击时,将对硬件进行归零并防止钥匙值受到损害。该主密钥存储在安全硬件中,用于保护操作密钥。硬件内(通过随机数生成器函数)生成安全密钥的清晰值,并在主密钥下进行加密。当安全密钥必须离开安全的硬件边界(要存储在数据集中)时,将密钥在主密钥下进行加密。因此,加密值存储,而不是密钥的清晰值。一段时间后,当需要恢复数据(解密)时,安全的键值将加载到安全的硬件中,在该硬件中将从主密钥中解密。然后将在安全硬件内使用原始键值,以解密数据。如果安全密钥存储在CKD中,并且主密钥更改,ICSF提供了重新启动安全键的能力;那就是将其从原始的主密钥中解密,然后在新的主密钥下重新加密它,所有这些都在安全硬件中,然后将其存储回新的CKD,现在与新的主密钥值相关联。当需要与合作伙伴共享时,也可以在密钥加密密钥或运输密钥下加密安全密钥。在这种情况下,当它留下硬件的安全边界时,它将在传输密钥(而不是主密钥)下进行加密。
在设计用于宽带模拟和数字的包装时,例如在串行通信链路或测试和测量应用中使用的包装,必须格外小心,以确保通过芯片上的芯片维持信号保真度到芯片外互连路径。芯片,例如电子测试仪器中使用的串行收发器或放大器,可能具有从DC到10s GHz的操作带宽,并且通常将其集成到50 O系统中。在包装和印刷电路板(PCB)上设计受控的阻抗传输线,这是一个相对简单的物质。但是,这两个领域之间的连接变得更加复杂。片上受控信号路径通常通过电线键连接路由到芯片上受控的阻抗路径。电线键连接由一端连接到IC上的键垫的电线组成,并在另一端连接到包装基板上的传输线(或直接在芯片板应用中的PCB上)。由于这些线键是电线的薄环,从接地平面上循环,它们几乎总是对电路感应,在信号路径中显示出比更高的特征阻抗的一部分。图。1。此简化的图形在陶瓷包装基板上显示了一个腔化的IC。模具位于陶瓷基板形成的腔体内,并粘合到铜模板上。粘结线从芯片控制的阻抗传输线连接到包装基板上的传输线。芯片厚度和陶瓷底物的厚度大致相等,因此
aldiğiPuanadi:.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................