性能。在过去的十年中,已经对含有用于耐腐蚀性的复合涂料的基于功能化石墨烯的纳米片(GNP)进行了几项实验研究。其中一些提供了腐蚀抗性的改善,而其他一些则没有成功。例如,Krishnamoorthy等人[1]通过将石墨烯氧化物片掺入醇酸树脂中,制备了油漆复合材料。在类似于海水的侵略性氯化物环境中,通过数量级改善了镀锌铁的耐腐蚀性。Chang等[2]报道了聚苯胺(PANI)/石墨烯复合涂料,以提高钢在海水中的耐腐蚀性,最高数量级。电阻随复合材料中石墨烯基材料的含量而增加。但是,有必要适当地将本研究中使用的石墨烯纳米材料功能化。将GNP掺入聚合物矩阵后,由于聚合物涂层而导致的腐蚀性进一步改善的机制在于GNP在通过涂层渗透的同时为腐蚀性物种创造曲折路径的能力。实际上。在含聚苯胺/含有粘土的复合材料表(PACC)的情况下,一种类似的机制也是如此。然而,已经证明了带有GNP的复合涂料可以优于聚苯胺/粘土片(PACC)的复合材料,因为前者为腐蚀性物种提供了更曲折的路径,如通透性数据所证明的那样。另一项研究[3]还支持了由于基于石墨烯的材料的板/去角质而引起的曲折路径机制。已经对含有GNP的复合材料进行了进一步的研究(例如,石墨烯纳米片[4],氧化石墨烯(GO)[5],还原氧化石墨烯(RGO)[6])。但是,这些系统并未作为令人印象深刻的耐腐蚀性产生。为了理解这种变异性的原因并减轻它们的原因,建议在合成中利用机器学习(ML)可用的现代工具,以及其对复合涂料的降解。
聚酰亚胺是半导体工业中广泛使用的介电材料。然而,固化反应过程中产生的气体会腐蚀电子电路,从而导致可靠性问题。可以使用 EGA-MS(使用 Double-Shot Pyrolyzer)(技术说明编号 PYA3-001)以及 TGA 研究这种气体释放。图 1 显示了聚酰亚胺薄膜的固化反应。首先,将 BPDA 和 3,3'-DDS 在较低温度下加热以生成聚酰胺酸。接下来,将材料进一步加热到较高温度以生成固化的聚酰亚胺。TGA 曲线(图 2)显示了固化过程中的重量损失。在 100~350ºC 和 350~450ºC 处可以清楚地看到两个不同的反应阶段。图 3 显示了 EGA-MS 对此过程的研究结果。图 2 中第一阶段 TGA 重量损失与图 3 区域 A 中演化的材料相匹配,第二阶段重量损失与区域 B 中的 EGA-MS 数据相匹配。EGA 产生的化合物通过 GC 分离和测定。使用 MS,选择离子监测显示图 3 中一些感兴趣的化合物的分布。这些结果表明,DMAc、CO2 和 H2O 是在固化过程的第一阶段产生的,而 CO2、SO2 和苯胺是在第二阶段产生的。正如这个例子所示,EGA 是解决聚合物材料问题的极其有用的工具。
采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。
对于此类高级应用,使用高精度的电导率测量单元,能够在广泛的电导率范围内进行测量并且对广泛的腐蚀性离子介质具有抵抗力是有益的。最常见的是,使用了两种类型的电导率传感器:基于电极的传感器和电感传感器。电极传感器适用于低电导率和中等电导率,电导率的精度在2×10-8至0.65 s cm -1的范围内±3%至5%。14,15在通用设备中,由于这些传感器的紧凑设计,尤其是针对更高的电导率,准确性降低了。此外,在反应性介质中,电极结垢可以改变细胞常数,并对测量精度产生负面影响。电感传导率传感器特别适用于苛刻的化学环境,因为只有惰性和耐热材料(例如PEEK和PTFE)与样品接触。但是,这些传感器缺乏电极型对应物的灵敏度,并且需要较大的样品体积。16后者在实验室应用中不利,例如,当空间有限或
1,3,4,5学生,2名学生系教授,高级生命科学中心,Deogiri College,Aurangabad(M.S),印度摘要:使用改良的Barr的媒体,营养和土豆,养分和土豆 - 脱脂式媒体,从铁制造的土壤材料中回收了几种细菌和真菌分离株。 根据修饰的Barr培养基的生长,选择了五种细菌和7种不同的真菌分离株。 五种细菌中;四个属于芽孢杆菌家族,一个细菌是假单胞菌。 此外,分别来自曲霉家族的七种不同的真菌分别是镰刀菌,trichoderma,verticillium,cladosporium。 在硫酸亚铁,硫酸铁和柠檬酸铵等铁盐存在下,生物体显示出更好的生长。 发现了五种分离株将枯草芽孢杆菌最有效的铁(Fe 2+)转化为铁(Fe 3+)。 许多细菌与铁的氧化有关。 关键词 - 腐蚀,微生物学影响的腐蚀,Barr的培养基,SRB培养基。1,3,4,5学生,2名学生系教授,高级生命科学中心,Deogiri College,Aurangabad(M.S),印度摘要:使用改良的Barr的媒体,营养和土豆,养分和土豆 - 脱脂式媒体,从铁制造的土壤材料中回收了几种细菌和真菌分离株。根据修饰的Barr培养基的生长,选择了五种细菌和7种不同的真菌分离株。五种细菌中;四个属于芽孢杆菌家族,一个细菌是假单胞菌。此外,分别来自曲霉家族的七种不同的真菌分别是镰刀菌,trichoderma,verticillium,cladosporium。在硫酸亚铁,硫酸铁和柠檬酸铵等铁盐存在下,生物体显示出更好的生长。发现了五种分离株将枯草芽孢杆菌最有效的铁(Fe 2+)转化为铁(Fe 3+)。许多细菌与铁的氧化有关。关键词 - 腐蚀,微生物学影响的腐蚀,Barr的培养基,SRB培养基。
自1960年代初在上一个century [1-7]中,自1960年代初以来,高功率,衍射有限的激光系统是激光物理和工程中最重要的任务之一[1-7]。这些系统是科学研究,各种技术应用所必需的,最重要的是,军事应用需要[7-9]。高功率连续波激光系统最有前途的技术是Fier激光技术,它与散装晶体或化学激光器相比提供了更好的尺寸,重量和功率。然而,存在基本的物理现象(布里渊散射,拉曼散射,横向模式不稳定性,热启动效应,表面和体积损坏),它们将单个纤维的输出功率限制在几个kws [4、5、9-13]中。在接近划分的模式下,超过100 kW激光输出功率的路径似乎是光束组合技术[14 - 17]分为两组:连续束与单个孔径结合和平行的“瓷砖”光束组合,可以将其实现为不连贯的光束组合(ICBC)和CoherentBeamBeamBeambembc(CBC)。在ICBC的情况下,远场中的功率密度与n(发射器的数量)相关。实验证明了此类系统,并且发现相对于大气中的长传播距离是可行的[18-22]。CBC的最大强度与N 2
食品加工厂的清洁度非常重要;您需要确保使用消毒剂和杀菌剂消除表面和设备上的所有微生物。由于大多数杀菌剂对金属具有很强的腐蚀性,我们保证我们的产品在各种应用中都能抵抗这些高腐蚀性化学品。
钛合金,例如Ti6Al4v,由于其有利的性质,在生物医学行业被广泛用于11种植入物应用。然而,这些合金在存在体液的情况下可以经历12种长期腐蚀,这是植入物13的关键问题,因为它会影响其时间pan。因此,本研究旨在检查体液中14 Ti6al4v的腐蚀性。高度期望的电气排放加工(EDM)技术15用于TI6AL4V样品制备的三种不同条件(油,去离子水,16和羟基磷灰石)混合在去离子水中)。通过微观结构分析,使用电化学17分析评估腐蚀。 结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。 在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。 20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。 22腐蚀。结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。22
传感器不应暴露于腐蚀性气体(或主气体样本中的腐蚀性污染物),因为它们会对传感器产生化学腐蚀,使其失效。此类气体的例子有汞 (Hg)、氨 (NH 3 )、氯 (Cl 2 ) 和湿酸蒸气,即含水量大于 100ppm(v) 的气体中的酸蒸气。还应防止强氧化剂(如臭氧 (O 3 ))与传感器接触。