振动极性子是通过光腔中分子振动和光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子特性,甚至会影响化学反应性。然而,分子集合中的相互作用是复杂的,并且尚未完全了解导致修饰的确切机制。我们基于双量子相干技术模拟了分子振动极化子的二维红外光谱,以进一步深入了解这些混合光 - 制成状态的复杂多体结构。双重量子相干性独特地分辨出杂交光 - 偏振子的激发,并允许人们直接探测所得状态的非谐度。通过将腔体出生的腔体 - oppenheimer hartree -fock ansatz与相应特征状态的完整量子动力学模拟结合在一起,我们超越了简化的模型系统。这使我们能够研究自动极化的影响以及电子结构对腔体相互作用在光谱特征上的响应,甚至超出了单分子情况。
超导性不常规的超导不导度和超导体非平衡系统的集体模式,从平衡轻度杂交腔体层子和集体模式杂交量量量子和希尔伯特空间系统的局限性启用的新型方法中,将超级传导性从平衡的轻度杂交腔体极化和集体模式的效果进行稳定,并将其用于均匀的系统启用,并将其固定在许多范围内启用,并将其固定在许多范围内启用,并将其固定在许多范围动力学和希尔伯特空间几何学的媒体动力学相互作用
气泡在沸腾过程中的成核、生长、聚结和脱离是影响传热和散热性能的重要现象。观察气泡行为是理解沸腾传热机理的重要方法。本研究了单个气泡在 SiO 2 涂层表面从不同直径的孤立人工空腔中成核和脱离的动力学。实验在 FC-72 中进行,饱和压力从 0.75 bar 到 1.75 bar。使用高速摄像机研究了气泡在成核过程中的行为。在完整的气泡生长期内,FC-72 气泡呈球形。在初始生长期后,它与沸腾表面的唯一接触是通过我们所说的狭窄的“蒸汽桥”。接触面积的大小受空腔直径的影响:空腔口越大,气泡脱离直径越大。气泡脱离直径从 20 µm 腔体直径的 0.45 mm 增加到 70 µm 腔体直径的 0.61 mm。此外,更高的饱和压力将产生具有较小脱离直径的气泡:它们从 0.75 bar 的 0.62 mm 减小到 1.75 bar 的 0.47 mm。在腔体直径和饱和压力相似的情况下,气泡脱离直径不会因过热度的不同而发生显著变化。气泡脱离频率随过热度的增加而线性增加。虽然压力对气泡脱离频率有限制作用,但另一方面,较大的腔体直径会导致较低的气泡脱离频率。
散裂源已从准备和调试阶段转入全面工厂模式。我们的 SuRF 实验室设施一直在不停地准备、测试和重新清洁射频腔(必要时),现在我们已将大部分射频腔交付给法国团队,由他们组装成低温模块。这是一个细致的过程,需要非常高水平的质量保证和文档。我们的辛勤工作意味着我们的法国同事一直有大量的腔体可用,让他们忙个不停!随着这项活动的结束,SuRF 实验室将转变为不仅为美国费米实验室的质子改进计划 II 提供合格超导射频腔的区域,而且也是我们组装容纳这些腔体的长低温模块的区域。为达到这一点,我们已经为这项活动做了大量准备工作,包括启动材料和腔体的采购。在达斯伯里实验室的其他地方,ASTeC 一直负责交付用于大型强子对撞机高亮度升级的短蟹腔低温模块原型。紧接着将进行生产模块的组装。同样,这是一项紧张的活动,将在国际上产生巨大影响。
软机器人是为了解决传统机器人在处理人和精密生物物品时的局限性而创建的。[1-4] 软气动执行器(SPA)的工作原理是将调节的正压或负压注入柔性结构内的密封腔中。这些执行器可以弯曲、扭曲、伸展或收缩。[5] 执行器对施加压力的反应取决于腔体的材料和形状。执行器的几何形状或多材料分布可以在更广泛的意义上得到改进。软执行器和机器人的自主设计可能受益于优化壁厚和改变腔体结构。由于软机器人固有的柔顺性,软执行器可以产生相对被动的变形,并根据被处理的物体的形状进行修改。[6] 因此,腔体对弯曲和驱动的影响对于增强软执行器的能力至关重要。此外,有限元法 (FEM) 还可用于改进软机器人,预测其运动,并消除制造后出现的问题。[7] 人们已经采用了各种各样的新开发来提高软机器人的效率,并且已经使用了许多新设计来实现软机器人执行器的多功能性和增强的适应性。[8 – 13]
由于本报告篇幅有限,因此假设读者对将激光器稳定到参考腔体领域有一定的了解。对于不熟悉该领域的人来说,Hamilton 的评论文章 [1] 是一个很好的起点。虽然提高激光器的被动稳定性很有用,但只能将激光线宽减小到一定程度。为了取得进一步进展,需要进行主动稳定。主动稳定的先决条件是鉴频器。可以使用分子吸收或参考腔体。参考腔体有两个优点,首先,谐振梳允许访问光谱中的任何位置。此外,控制信号的信噪比可以几乎无限制地增加,而不会因功率而使谐振变宽。在实现这种类型的激光稳定之前,激光源必须以单一的空间和时间模式运行。还假设有足够带宽的致动器来涵盖激光器的固有噪声。这些致动器既可以作用于激光腔本身(压电安装镜、腔内布鲁斯特板),也可以作用于腔外的光(声光调制器 -AOM、电光调制器 -EOM)。20 世纪 80 年代,出现了许多技术发展,使得构建 1 赫兹激光器成为可能。使用参考腔的主要问题之一是热长度变化。
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。
摘要:分子强耦合为物理,化学和材料科学提供令人兴奋的前景。虽然注意力集中在为分子系统开发现实模型上,但探索光腔的整个光子模式结构所起的重要作用却较少。我们表明,分子强耦合的有效性可能主要取决于腔体的技巧。具体而言,我们只看到与配色体下极化相关的发射,对于有足够的技巧的空腔。通过在多模结构中开发一个腔光光致发光的分析模型,我们阐明了有限的技巧在北极星形成中的作用,并表明降低技巧可以降低北极星状态中光和物质的程度。我们建议,腔体支持的光子模式的详细性质对于开发分子强耦合的连贯框架与包括逼真的分子模型一样重要。
使用圆柱形腔体测量天然气成分的多组分混合物。这些数据涵盖了 250 至 350 K 的温度范围,压力高达 10 MPa。数据的不确定性约为 0.05%。二元混合物