人工智能(AI)系统的安全是人类决策之一,既是一个技术问题。在AI驱动的决策支持系统中,尤其是在医疗保健等高风险环境中,确保人类互动的安全至关重要,鉴于遵循错误的AI建议的潜在风险。为了探索这个问题,我们在物理模拟套件中进行了以安全为中心的临床医生-AI相互作用研究。医生被放置在模拟的重症监护病房中,并带有人类护士(由经验培训者扮演),ICU数据图,高保真患者的人体模特和AI建议系统。临床医生被要求为模拟患者开出两种药物,患有败血症并戴着眼镜的眼镜,以使我们能够评估他们的凝视在哪里。我们在看到AI治疗建议之前和之后记录了临床医生治疗计划,这可能是“安全”或“不安全”。92%的临床医生拒绝了不安全的AI建议,而安全的AI建议占29%。医生增加了注意力(+37%的注视固定),以不安全AI建议与安全的建议。但是,在不安全的情况下,对AI说明国家的视觉关注并不高。同样,在不安全的AI与安全AI后,临床信息(患者监测器,患者图表)没有得到更多关注,这表明医生没有回顾这些信息来源来调查为什么AI建议可能不安全。医师只能成功说服通过床头护士的脚本评论来改变剂量。我们的研究强调了人类监督在安全至关重要的AI中的重要性,以及在高保真环境中评估人类系统的价值,更像现实世界实践。
与GMC良好医疗实践中规定的患者和同事(2013年)所述。附录骄傲的价值观这些都是谢菲尔德教学医院NHS基金会信托基金会的所有员工都将在他们所做的一切中证明。p首先 - 确保我们所服务的人是我们所做的事情的核心 - 要善良,尊重,公平和价值多样性 - 庆祝我们的成功,持续学习,确保我们改善我们 - 与他人合作 - 与他人合作 - 对我们的行为有效,有效,对我们的行为有效,
为了填补这一空白,Dhaher 博士、Hutcherson 博士及其同事在 2018 年 Dhaher 博士及其同事在西北大学任职期间首次报告的计算机模型的基础上进行了改进。新模型研究了三种细胞类型在模拟膝盖损伤后对不同浓度的雌激素、孕酮和睾酮(三种主要性激素)的反应。这些细胞类型是软骨细胞(形成软骨)、滑膜成纤维细胞(形成膝关节周围的内膜)和巨噬细胞(膝盖内的主要免疫细胞类型)。
©作者在欧洲放射学学会的独家许可下。2022 Open Access本文均在创意共享归因4.0国际许可下获得许可,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
西部安大略省和麦克马斯特大学关节炎指数(WOMAC)仪器评估了三个维度(疼痛,僵硬和身体功能),它使用24个项目:疼痛(5),僵硬(2)和身体功能(17)项目。它产生三个子量表得分,每个维度一个分数和一个总索引得分[19]。本研究中使用的WOMAC版本使用0-4的量表,得分较低,表明症状水平较低或身体残疾。分别以疼痛,僵硬和身体功能分别将每个子量表汇总到最高分数20、8和68分。WOMAC总数分数或全局得分通常是通过总结3维度的分数来计算的[20]。问卷是自我管理的,大约需要5-10分钟才能完成。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
f i g u r e 1 Vicon标记(前后)用于反射标记(A):右前头部RFHD,左前头部LFHD,左后头LBHD,左后头LBHD,右后头RBHD,Clavicle Clav,Clavicle Clav,Clavicle clav,serternum strn,c7,C7,C7,C7,c7 LWRA/LWRB, Left Finger LFIN, Right Shoulder RSHO, Right Upper Arm RUPA, Right Elbow RELB, Right Forearm RFRM, Right Wrist RWRA/RWRB, Right Finger RFIN, Left ASIS LASI, Left PSIS LPSI, Right ASIS RASI, Right PSIS RPSI, Left thigh LTHI, Left Knee LKNE, Left Tibia LTIB, Left Ankle LANK, Left脚跟Lhee,左脚趾ltoe,右大腿Rthi,右膝盖rkne,右胫骨rtib,右脚踝等级,右脚跟Rhee和右脚趾rtoe; SBSQ置(B)的标记模型由24个解剖键组成组成,结合成骨骼模型:0:骨盆中心,1:中心左髋关节,2:右臀部中心臀部,3:下脊柱,4:左膝盖中心,4:左膝盖,5:右膝盖的中心,6:中心,7:中心,7:左中间:左左:左:左:左:左:8:左:脚趾,11:右脚趾的中心点,12:脖子,13:左锁骨中心点,14:右侧锁骨中心点,15:头部中心,中心,16:左肩关节中心:17:右肩关节中心,右肘接头,18:左肘接头中心,19:右肘中心,右肘关节中心,20:20:左手腕的中心:左手腕的中心,21:左手腕的中心,左右22:左侧的中心:左侧的右侧孔右侧和23:23:23:23:23:23:23:23:23:23:
目标。对包括手术,麻醉和工程在内的操作环境足迹的详细量化很少见。我们检查了所有这些方面,以找到操作的温室气体排放。方法。我们对10名接受总膝盖置换的患者进行了生命周期评估,收集了所有手术设备的数据,清洁的能量需求以及手术室的能源使用。麻醉数据来自我们的先前研究。,我们使用生命周期评估软件将能源和材料使用的输入转换为kg Co 2 E排放中的输出,使用蒙特卡洛分析的置信区间为95%。结果。平均碳足迹为131.7公斤CO 2 E(95%置信区间:117.7-148.5 kg CO 2 E);手术是最重要的(104/131.7 kg CO 2 E,80%),麻醉的贡献较小(15.0/131.7 kg CO 2 E,11%)和工程(11.9/131.7千克CO 2 E,9%)。温室气体排放的主要手术来源是:用于消毒和蒸汽消毒和蒸汽可重复使用的设备(43.4/131.7 kg co 2 E,33%),一次性设备(34.2/131.7 kg co 2 E,26%),单独使用聚丙烯13.7/131.7 kg Co 2 E(11%)(11%)(11%)(11%)(11%) (15%)。用于能源使用,主要贡献者是:加热(6.7千克CO 2 E)和加热,冷却和风扇(4千克CO 2 E)。结论。总膝盖替换的碳足迹等于在标准的2022澳大利亚汽车中驾驶914公里,手术贡献了80%。这样的数据提供了通过审慎的设备使用,更有效的蒸汽灭菌和可再生用电以及减少一次性浪费来减少操作的碳足迹的指导。
这项全面的综述提供了对富含血小板的血浆(PRP)和骨髓抽吸物浓缩液(BMAC)的深入分析,作为膝关节骨关节炎的潜在治疗方法。它探讨了他们的作用机理,临床功效,安全考虑以及个性化治疗方法的重要性。评论重点介绍了有关PRP和BMAC减轻症状,改善关节功能以及潜在疾病进展的能力的有希望的发现。它强调需要进一步研究长期结果,直接比较研究,方案标准化,生物标志物识别和成本效益评估,以增强临床实践。虽然审查没有直接比较PRP和BMAC,但它为它们在膝盖骨关节炎管理中的作用提供了宝贵的见解。该评论旨在通过解决关键的研究优先级和完善治疗策略来促进膝关节骨关节炎再生疗法的基于证据的进步。