石油和石油资源的开采和利用以及将其转化为基本燃料和化学品,对环境产生了严重影响,导致全球变暖和气候变化。此外,化石燃料是有限的资源,很快就会短缺。因此,研究工作越来越侧重于开发化学品和燃料生产的可持续替代品。在这种情况下,依赖微生物的生物过程引起了特别的兴趣。例如,产乙酸菌使用 Wood-Ljungdahl 途径以单碳 C1 气体(CO 2 和 CO)作为唯一碳源生长,并产生有价值的产品,如醋酸盐或乙醇。因此,这些自养生物可用于大规模发酵过程,从丰富的温室气体中生产工业相关化学品。此外,最近已经开发出遗传工具,通过合成生物学方法改进这些底盘生物。本综述将重点介绍遗传和代谢改造产乙酸菌的挑战。它将首先讨论这些生物体中成功进行 DNA 转移的物理和生化障碍。然后将介绍目前为几种产乙酸菌开发的遗传工具,这些工具对于菌株工程巩固和扩大其产品目录至关重要。最后将介绍用于代谢工程目的的最新工具应用,这些工具允许重新定向代谢通量或生产非天然化合物。
太空中的生物反应器可应用于从基础科学到微生物工厂的各个领域。在微重力环境下监测生物反应器在流体、通气、传感器尺寸、样品量以及培养基和培养物的扰动方面都存在挑战。我们介绍了一个小型生物反应器开发案例研究,以及一种监测酵母培养物溶解氧、pH 值和生物量的无创方法。针对系统容量 60 毫升和 10.5 毫升,测试了两种不同的生物反应器配置。对于这两种配置,光学传感器阵列 PreSens SFR vario 都会自动收集数据。使用直径为 7 毫米、固定在采样室底部的化学掺杂点监测培养物中的氧气和 pH 值。当点分别与氧分子和氢离子反应时,会发出 DO 和 pH 的荧光信号。使用以 605 nm 为中心的光反射率来感测生物量。光学阵列有三个光检测器,每个变量一个,它们返回的信号经过预校准和后校准。对于需要氧气和呼吸二氧化碳的异养培养,与光学阵列同轴的中空纤维过滤器可给细胞供氧并去除二氧化碳。这提供了足以维持稳定状态条件下有氧呼吸的氧气水平。比较并讨论了两个生物反应器中酵母代谢的时间序列。生物反应器配置可以很容易地修改为自养培养,从而增强二氧化碳并去除氧气,这是光合藻类培养所必需的。
萜类化合物是一大类具有商业用途的天然产物。微生物生产萜类化合物被认为是稳定供应这些复杂碳氢化合物的可行方法。蓝藻是一种光合原核生物,是可持续生物生产的有吸引力的宿主,因为这些自养生物只需要光和二氧化碳就能生长。尽管蓝藻已被改造成生产各种化合物,但它们的萜类化合物生产率通常较低。需要进一步研究以确定提高蓝藻萜类化合物产量的瓶颈反应。在这项研究中,我们对快速生长的蓝藻 Synechococcus elongatus UTEX 2973 进行了改造,使其生产一种商业用途的萜类化合物柠檬烯。我们在编码香叶基香叶基焦磷酸合酶 crtE 的基因中发现了一个有益的突变,导致柠檬烯产量增加了 2.5 倍。工程菌株以每天 8.2 mg L 1 的速率生产了 16.4 mg L 1 的柠檬烯,比之前报道的其他蓝藻物种的柠檬烯产量高出 8 倍。此外,我们采用了组合代谢工程方法来优化参与柠檬烯生物合成上游途径的基因。通过调节编码 MEP 途径中的酶和香叶基焦磷酸合酶的基因的表达,我们表明优化表达水平对于提高蓝藻中的柠檬烯产量至关重要。
过渡到圣彼得堡大学音乐学院的钢琴研究。经过多年的学术挫败感,他加入了圣彼得堡大学的实验室。在那里他追求自然科学,并最终获得了化学和植物学的硕士学位。(1)虽然微生物学不是科学家的新概念,但他们对微生物的代谢多样性及其与地球的关系知之甚少。Winogradsky的突破之一是发现自养细菌。(2)通过他在斯特拉斯堡大学的安东·德巴里(Anton Debary)实验室的工作,他确定了一个非凡的微生物群体,能够利用无机化合物作为能源。Winogradsky见证了乞g和硫酸细胞中硫颗粒的外观和消失,他将这些生物称为“ Chemolithotrophs”。这些化学物质可以驱动元素能量周期,例如氮和硫。(1)这一开创性的发现挑战了所有生命仅依赖于光和有机化合物来维持生存的普遍观念。在1888年,Winogradsky在Debary实验室的努力即将结束,现在是时候开始他职业生涯的下一阶段了。氮在微生物生命周期中的作用。Winogradsky在苏黎世大学的卫生研究所,证实了英国化学家罗伯特·沃灵顿(Robert Warington)关于细菌对无机氨和亚硝酸盐氧化转化的理论。(1)Winogradsky鉴定了多个硝化细菌属,其中一些是硝化细菌,硝基杆菌,硝基瘤和硝基球菌。(3)当他于1899年回到圣彼得堡时,Winogradsky确定了强制性的Anaerobe梭子座巴氏菌,这证明某些生物可以修复大气氮。
北方森林通常被设法最大化木材生产,但其他目标(缓解气候变化)越来越重要。因此,有必要检查森林产量与其在森林林分中碳固存和气候变化的潜力之间的协同作用和权衡。为此,我们开发了一种新型的基于过程的基于过程的隔室模型,该模型允许从光合固定的碳路径遵循碳路径,直到其通过自养或异养的呼吸恢复到大气中,或者被燃烧为木材。在系统中的碳之后,可以说明森林生态系统和木制品将碳远离大气(即碳运输时间)保留多长时间。例如,我们将模型应用于四种管理场景,即混合型松树,均匀的松树,均匀年龄的云杉和均匀的混合森林,以及相对于木材生产,碳螯合和气候变化缓解潜能的性能的对比度。虽然在80年旋转结束时,均匀的森林比混合森林高出31%,而混合森林在几乎整个旋转中都优越,而在碳保留时间远离大气(即,就气候变化潜力而言。重要的是,在生态系统中最大化生产或碳量最大的情况不一定是避免大气的碳保留最有益的。这些结果强调了在评估森林管理选项以缓解森林管理方案时考虑碳运输时间的重要性。
21。在2013年,布拉索斯河的水和德克萨斯州河流的水分排放最高。 哪个最能描述如何发生的因素? A.风化B. 侵蚀C.沉积D. Delta 22。 有意将最初的生物寄入太空? A. 狗B. 果蝇C.松鼠猴D.鼠标23。 在生态系统中,如果猎物种群大幅增加,则可能发生以下哪项? A. 捕食者人口将减少B.自养生人群将增加C.捕食者人口将增加D.猎物人口将减少24。 在主要继承过程中,以下哪项最不可能存在? A.草B. Moss C. Lichen D.树25. 一种表现出枯萎迹象的植物可能有以下哪种? A. 内部温度降低B。 水分增加C。水的减少26。 一个人用一对剪刀剪手指。 然后,个体会在切割中形成细菌感染。 以下哪项是正确的? A. 身体将产生新的白细胞B。 身体会发烧C。该人应接种疫苗D. A和B 27。 肾上腺释放控制肾脏和血糖水平的化学物质。 哪种身体系统最大的肾上腺影响最大? A. 循环系统和排泄系统B.消化和免疫系统C.循环系统和外皮系统D.消化与神经系统28。在2013年,布拉索斯河的水和德克萨斯州河流的水分排放最高。哪个最能描述如何发生的因素?A.风化B.侵蚀C.沉积D. Delta 22。有意将最初的生物寄入太空?A.狗B.果蝇C.松鼠猴D.鼠标23。在生态系统中,如果猎物种群大幅增加,则可能发生以下哪项?A.捕食者人口将减少B.自养生人群将增加C.捕食者人口将增加D.猎物人口将减少24。在主要继承过程中,以下哪项最不可能存在?A.草B. Moss C. Lichen D.树25.一种表现出枯萎迹象的植物可能有以下哪种?A.内部温度降低B。水分增加C。水的减少26。 一个人用一对剪刀剪手指。 然后,个体会在切割中形成细菌感染。 以下哪项是正确的? A. 身体将产生新的白细胞B。 身体会发烧C。该人应接种疫苗D. A和B 27。 肾上腺释放控制肾脏和血糖水平的化学物质。 哪种身体系统最大的肾上腺影响最大? A. 循环系统和排泄系统B.消化和免疫系统C.循环系统和外皮系统D.消化与神经系统28。水分增加C。水的减少26。一个人用一对剪刀剪手指。然后,个体会在切割中形成细菌感染。以下哪项是正确的?A.身体将产生新的白细胞B。身体会发烧C。该人应接种疫苗D. A和B 27。肾上腺释放控制肾脏和血糖水平的化学物质。哪种身体系统最大的肾上腺影响最大?A.循环系统和排泄系统B.消化和免疫系统C.循环系统和外皮系统D.消化与神经系统28。许多生物迁移以增强其生存。列出的哪个哺乳动物是最长的迁移?A. A. Artic Tern B.座头鲸C.棱皮龟D.君主蝴蝶
使用DNDC(denitrifi阳离子分解)模型(版本9.5)来预测多年生草的蒸腾和光合作用速率(红三叶草和提摩太教)的差异,以及一种砂质苏普固醇的自亲呼吸。在模型实验中使用了两个生长季节的输入参数(从2010年5月1日至2015年8月31日至2015年8月31日)。在2010年,该周期的平均空气温度为14.1±3.3°C,总降水量为0.1796 m,而在2015年,平均空气温度为16.8±5.5°C,总降水量为0.538 m。这些气象参数对2010年的植物不利,2015年有利。结果表明,DNDC模型充分预测了多年生草的总和平均蒸腾率的天气引起的差异:0.12204 m。和0.00099±0.00040 M.Day -1分别在2015年有利的气象条件下和0.05969 m。和0.00049±0.00035 m.day -1,在2010年不利的气象条件下。植物的每日蒸腾率的动力学显着(r = 0.34 p <0.001)与土壤水含量仅在不利的气象条件下相关。模拟光合作用速率的平均值等于2015年的84.4±27.9 kg.c.c.hha -1。天-1,2010年52.3±23.4 kg.c.hha -1 .day -1 .day -1 -1在2010年。在两种天气情况之间的光合作用速率的平均值中存在显着的差异(p <0.001)。单向方差分析(ANOVA)的结果表明,在有利的(8.14±2.25 kg.c.h -1 .day -1)下,自养呼吸的速率比不利(8.14±2.25 kg.c.ha -1 .day -1)高于不利(5.17±2.17±2.19±2.19±2.19 kg.c.c.ha -1 .day -1 .day -1 .day -1)。
在全球不同的海洋和陆地环境中,已经报道了抽象的Zetaproteobacteria。它们在富含海洋铁的微生物垫中起着至关重要的作用,作为其自养主要生产者之一,氧化Fe(II),并产生具有不同形态的Fe-氧还氧化物。在这里,我们通过使用Zetaproteobacte Rial操作分类学单元(Zetaotu)分类,研究和比较了来自幸运罢工水热场六个不同地点的富含铁的微生物垫的Zetaproteobacterial社区。我们首次报告了这些富含铁的微生物垫的Zetaproteobacterial核心微生物组,该垫子由四个是国际化的Zetaotus组成,对于垫子的发展至关重要。对位点之间不同Zetaotus的存在和丰度的研究揭示了两个簇,这与它们开发的底层的岩性和渗透性有关。簇1的zetaproteobacterial群落是渗透不良的底层的特征,几乎没有弥漫性排气的证据,而群集2的斑点底层则在水热板或沉积物上形成,允许扩散水热流体的渗透和流出。此外,还确定了两个Newzetaotus 1和2,这可能分别是人类铁的特征和未经证实的玄武岩。我们还报告了某些Zetaotus的丰度与氧化铁形态的含量之间的显着相关性,这表明它们的形成可能是分类学和/或环境驱动的。我们确定了我们命名为“珊瑚”的Fe(III) - 氧氧化物的新形态。总体而言,我们的工作通过提供来自大西洋的其他数据来帮助对该细菌类别的生物地理学的知识,这是Zetaproteobacterial多样性的较少研究的海洋。
摘要:先前已使用基于CRISPR的诱变方法获得了厌氧甲基菌质细菌中的靶向突变。在这项研究中,将来自Callanderi的RELB家庭毒素放置在甲型苯乙烯敏感启动子的控制之下,形成可诱导的反选择系统。该诱导系统与非复制性整合诱变载体相结合,以在limosum b2的Eubacterium B2中创建精确的基因缺失。这项研究中针对的基因是编码组氨酸生物合成基因HISI,甲醇甲醇转移酶和类cor我蛋白MTAA和MTAC的基因,以及编码MTTB-氨基甲基转移酶的MTCB,先前显示出MTTB-FAMILY甲基转移酶。HISI内的有针对性的缺失带来了预期的组氨酸成可营养,MTAA和MTAC的缺失都废除了甲醇的自养生长。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。 在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。 可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。
能量的单向流动和物质的循环是一般生态学的两大原则(Odum,1963),不仅适用于生物圈及其组成生态系统,也适用于生态系统内的子系统。事实上,生态系统及其子系统只是自然现实的方便抽象。每个子系统的界限无法准确定义,因为许多生物都属于多个子系统。此外,每个子系统都不是孤立存在的,而是与其他子系统相互作用。因此,根微生物系统只是一个概念,它认识到陆地生态系统中能量流动的最重要途径之一是从植物根部直接流向微生物。根微生物系统几乎完全由异养生物组成,因此依赖于外部能量来源,即植物叶子。因此,考虑整个植物的能量流动是适当的。然而,这里不会讨论叶圈的微生物群落。叶子中的自养细胞(在某种程度上,枝条系统的其他部分)将阳光的能量转化为“还原碳单位”的化学能。碳是生物体通过化学键储存和转移能量的载体(Mooney,1972 年)。叶子中合成的大部分富含能量的物质被运输到植物根部,然后运输到微生物。在整个系统中,能量用于生长、繁殖、维持等过程,但根据热力学的经典定律,能量最终会全部消散并从系统中流失。在植物-微生物系统中,会合成许多碳化合物。并非所有这些化合物都会分解为 CO 2 ,甚至不会部分代谢。在某些情况下,热值未知或难以确定。因此,在目前的讨论中,方法将是绘制碳从固定到储存并在系统的不同组成部分中利用的移动。这将间接表明能量通过系统的转移。农学、生态生理学和土壤微生物学的最新进展提供了新的见解