摘要 本文探讨的工程自修复理论是在仿生学研究中应运而生的,旨在满足现代高风险流程制造和航空航天飞行器发展的巨大需求。仿生学开启了人工制品向自然物学习的新时代。随着工业互联网和人工智能技术的飞速发展,人们对故障产生和发展规律有了深刻认识,为工程自修复理论的产生提供了契机。工程自修复拓展了控制论和工程控制论的研究领域,赋予机器人类和动物特有的自我修复机制,使机器能够储存、补充和激活自我修复能量来维持机体健康。人工智能仿生研究大大加强了模仿人脑的功能,却忽视了人类和动物维持自身健康的重要系统和功能——自我修复系统和自我修复功能。人工智能模仿人脑有意识的思维控制行为,实现自动化、智能化,使机器更加聪明。人工自愈可以模仿人类无意识思维的自我恢复机制,预防和抑制运行中的故障,实现自我恢复,有可能使机器更加健康。人工自愈技术包括自我修复、补偿、自我保护和自我恢复调控等。工程自愈是机器乃至人工系统自主健康的基础,是仿生学的一个新的研究领域,在工程上有着广阔的应用前景。
边境管制 保护陆地边境免受非法活动和人员流动的侵害对于国土安全至关重要。当无法安装围栏和摄像头时,Flexnet 解决方案可以监控特定的兴趣点。部署在边境线上的传感器和摄像头在自愈无线网状网络中相互通信。网关用作中继器,将通信扩展到边境沿线的远程观察站。该系统可由多个用户从大型运营中心监控和操作,也可以通过小型手持设备进行监控和操作。当传感器检测到移动时,会立即通知警察。
灵气和其他能量疗法被纳入许多州的护理标准范围,可以解决压力、同情心疲劳和倦怠等问题。护士越来越容易受到这些情况的影响;灵气可以帮助他们自愈并帮助他人。灵气是一种振动或微妙的能量疗法,据信可以平衡人体的生物场并增强人体的自愈能力。灵气是一个日语单词,解释为“精神意识与宇宙生命力的结合”。这种生命力或“气”可能会在人体内受到干扰,导致精神或情感层面的失衡,并发展为能量功能失调,从而导致组织学疾病(Cushman & Hoffman,ŢŠŠŤ)。灵气也是一种生活哲学,指出所有生物都是相互联系的(Mills,ŢŠŠš)。灵气能量通过治疗师的双手流入人体生物场的负能量模式,并用正能量充电,提高身体内外的振动水平。它加强能量通路或经络,以自然的方式促进愈合(DiNucci,ŢŠŠť)。灵气恢复被压力或负面情绪阻塞的整个身体微妙能量系统的能量平衡和活力(Scholz,šũũŨ)。描述这种生物场动态的护理诊断是“能量场紊乱,人体周围能量流的中断,导致身体、心灵和/或精神的不和谐”(NANDA,ŢŠŠť)。护士必须认识并支持愈合的精神层面(Engebretson 和 Wardell,ŢŠŠŧ)。灵气是分层次学习的。灵气大师将灵气振动能量传递给学生,这被称为启蒙或合一。据信,这会使学生对生物场能量变化更加敏感;这与基本的自我护理有关,并且很容易融入到人们的生活方式中。这种有意识的、充满激情的实践是“抚慰、滋养和恢复”的(Brathovde,《灵气》,第 34 页)。
摘要 —ZigBee 无线传感器网络的使用日益广泛,覆盖了各种应用领域。ZigBee 的不同特性(如自愈、稳健性、支持网状拓扑)使其成为工业应用中极具吸引力的选择。本文分析了在飞机环境中使用 ZigBee 通信的效率。更具体地说,分析了机翼中的传感器与机舱中的控制器之间的无线通信效率。利用早期设计的飞机布线模型来模拟无线电波传播。本文使用 CST(计算机模拟技术)软件进行模拟。最后,本文提供了机翼形状和机翼内部结构对飞机机翼中无线电波传播的影响。
7. 课程的先进知识或研究方向:完成本荣誉课程后,学生可以在多个领域开展研究,如不平衡和谐波失真下的微电网分布式主动同步、直流微电网运行与控制、光伏微电网、转变能源模式、智能电网战略、电能质量增强、节约能源成本和提高效率、故障下的系统恢复(自愈)、农村微电网、船舶和飞机用交直流微电网、交直流微电网保护、直流微电网和直流住宅、基于风能/光伏/储能混合系统的微电网、储能系统、能源管理系统、微电网的设计、建模和控制、微电网元素之间的协调控制方案(包括直流微电网的通信系统和能源管理系统)
• 针对移动应用优化的流畅自愈网格 • 出色的范围和 NLOS 能力 • 具有超过 64 个节点的网格网络,信道带宽窄至 1.25MHz • 高达 87Mbps 的吞吐量 • 每个节点都可以充当视频、音频和通用 IP 数据源以及中继器 • 网络中没有中心节点,因为每个节点都是平等的 • 能够通过第三方承载器无缝链接不同的网格网络 • 透明 IP 网络允许连接任何通用 IP 设备 • 自适应调制在移动应用中保持连接 • 功率输出范围、安装选项和环境外壳适合操作环境 • 可选的端到端 AES 加密 • 能够构建网格组来创建网络 • 多路径 IP 网格节点可以提供独立的安全网络。
摘要:不同能源系统通常独立规划和运行,导致能源利用率低、自愈能力弱、系统可靠性低。为此,针对大规模综合能源系统,提出一种基于自适应聚类的分层布局优化方法,综合考虑能量平衡、输电损耗和建设成本。首先,提出一种基于能量平衡和负荷矩的自适应聚类划分方法,确定能源枢纽的最优位置,并将各分布式电源和负荷自适应地分配到不同的能源枢纽上,形成多个区域综合能源系统。然后,建立所提出的分层布局优化模型,分别寻找区域综合能源系统和多区域综合能源系统的修正最小生成树,构建经济可靠的互联网络。最后,通过仿真验证了优化模型和策略的有效性。
细菌生物膜的另一个主要特性是其粘稠的稠度。在大多数情况下,细菌生物膜可描述为粘弹性固体,即结合了液体和固体特性但以后者为主的材料。[8,20–26] 根据细菌种类的不同,实验室中生长的生物膜的硬度从几百到几千帕不等。[15,20,27] 然而,当暴露于某些金属离子(这些金属离子可能是生物膜生长的自然环境的一部分)时,这些硬度值可以增加 1000 倍。[15,20,21] 这一发现已经表明这种生物材料具有很高的适应性。更令人好奇的是生物膜具有自愈能力:即使暴露在较大的剪切力下,它们也能够快速完全恢复其初始的粘弹性。 [20,22] 这些特性使得生物膜能够永久地沉积在固体表面——即使在存在剪切力的情况下也是如此。[21,28,29]
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度