IEEE 光子技术快报 (PTL) 将出版一个专题部分,专门报道在 2024 年 6 月 21 日至 23 日在中国重庆举行的国际智能计算与无线光通信会议 (ICWOC) 上发表的高质量投稿和受邀演讲的扩展版本。ICWOC 2024 的主要主题是光无线通信 (OWC),它是一种利用光波作为载体传输数据以进行通信和其他目的的技术。由于其丰富且免授权的光谱、高传输容量、对电磁干扰的鲁棒性和固有的物理层安全性等优势,OWC 被广泛视为 6G 的关键支持技术。OWC 在自由空间、室内、水下、车载和卫星场景中的许多令人兴奋的应用方面展现出巨大潜力。然而,OWC 系统的实际部署仍然面临许多挑战,例如带宽限制、链路阻塞、不利的信道条件等。本期特刊的主题包括但不限于以下内容:自由空间光通信、可见光通信、水下 OWC、车辆 OWC、卫星 OWC、可见光定位、光集成通信与传感、OWC 数字信号处理、OWC 机器学习、用于同时数据传输和能量收集的 OWC。鼓励基础研究和应用相关的贡献。提交于 2024 年 9 月 1 日开始,稿件提交截止日期为 2025 年 1 月 1 日。出版计划于 2025 年 4 月出版。提交应在 IEEE 作者门户网站上在线进行:https://ieee.atyponrex.com/journal/ptl-ieee,论文格式符合 4 页 IEEE PTL 标准。所有提交的内容将按照期刊的正常程序进行审查。
这被提供给振荡器馈电磁控管。磁控管的微波功率输出被引导到抛物面反射器天线阵列中,以便传输到接收端天线。为了补偿自由空间中的大量损失,空间传播和接收端的信号强度以及转换效率。天线以阵列形式连接,基于 FM 运行的信号无线电控制反馈系统为磁控管提供适当的控制信号,使其输出电平随着接收端的消费者需求而波动。通过使用高转换效率的直流到交流投资者和更高额定值的 Scotty 二极管来增加天线阵列的方向性,可以提高 WPT 系统的整体效率。
使用2D聚焦光栅耦合器进行集成梁转向,用于可伸缩的离子量子计算Mizuki Shirao 1,Daniel Klawson 1,Sara Mouradian 2和Ming C. Wu 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 98195,美国电子邮件:shirao.mizuki@db.mitsubishielectric.co.jp * *作者当前的隶属关系是Mitsubishi Electric Corporation信息技术研发中心。摘要:提出了可扩展的梁转向装置,以控制离子陷阱量子计算机。波导阵列和二维聚焦耦合器的组合用于在自由空间中在729 nm波长下生成8×n光束斑点。关键字:量子计算,离子陷阱,集成的光子学
THz波段。具体而言,理想的阻抗匹配情况预测吸收效率的上限为50%,其中吸收体的方块电阻是自由空间阻抗的一半(Zo/2)[2]。此外,实现整个THz波段有效带宽覆盖的一个基本标准是自由电子的弛豫时间小于15fs。尽管如此,有证据表明,基于金属、石墨烯和拓扑绝缘体开发的吸收体通常仅在较窄的THz波段范围内实现高吸收,而不是在整个所需带宽内。因此,当前的研究人员在经典直流阻抗匹配模型的指导下,集中精力筛选广泛的候选材料,以解决THz波段有效吸收较窄这一长期存在的问题。
通信系统是航天器的重要组成部分。对于大多数任务,通信系统使航天器能够将数据和遥测数据传送到地球,接收来自地球的指令,并将信息从一个航天器传递到另一个航天器。通信系统由地面部分组成:位于地球上的一个或多个地面站,以及空间部分:一个或多个航天器及其各自的通信有效载荷。通信系统的三个功能是接收来自地球的指令(上行链路)、将数据传送到地球(下行链路)以及从另一颗卫星发送或接收信息(交联或卫星间链路)(图 9.1)。通信系统有两种类型:射频 (RF) 和自由空间光 (FSO),FSO 也称为激光通信 (lasercom)。
摘要:自由空间光学通信在太空中起着重要作用 - 陆地集成网络,因为它的优势包括与常规射频(RF)技术相比,数据速率perfor⁃Mance,低成本,增强安全性。与此同时,Cubesats在低地轨道(LEO)网络中变得很流行。这是造成低成本,快速响应以及组成星座的可能性的原因,并愿意执行单个大型卫星无法做到的任务。但是,在立方体之间建立光学通信链接是一项困难的任务。在本文中,审查了Cubesats上的切割 - 边缘激光技术的进步。显示了立方体上激光链路的字符以及激光通信终端(LCT)设计中的关键技术。
i1。空格到ogs光接口,(空气接口)i2。从光学台到安全区域(SMF28,FC/APC连接器)i3的经典光纤接口。量子界面从光学基础到安全区域(SMF28 / FC / APC连接器;或自由空间)i4。OGS网络接口,(10GBPS,SMF28,L C/PC连接器)i5。 功率接口32A,3阶段,380V AC注意:网络接口可用于非分类OGS功能的远程控制。OGS网络接口,(10GBPS,SMF28,L C/PC连接器)i5。功率接口32A,3阶段,380V AC注意:网络接口可用于非分类OGS功能的远程控制。
摘要 - FEW模式纤维是接收器自由空间光学通信的重要组成部分,以获得可实现的高耦合效率。根据自由空间光学通信链接到几种模式纤维的理论耦合模型是基于一组尺度适应的Laguerre-Gaussian模式提出的。发现各种模式的效率在存在大气湍流或随机抖动的情况下的行为不同。基于此模型,获得了最佳耦合几何参数,以最大程度地提高少数模式纤维所选模式的耦合效率。研究了随机抖动的沟通性能。表明,少数模式纤维比单模纤维具有更好的位率率性能,尤其是在高信噪比的比率方面。
博士学位课程大纲。入学考试I.物理尺寸分析,载体代数和载体计算,线性代数,矩阵,特征值和特征向量的数学方法。一阶和二阶,傅立叶和拉普拉斯变换的线性普通微分方程。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。基本概率理论,随机变量,二项式,泊松和正常分布。中央限制定理。II。 古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 自由空间和线性各向同性介质中的麦克斯韦方程。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。II。古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。自由空间和线性各向同性介质中的麦克斯韦方程。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒二元性,schrödinger方程(时间依赖性和时间无关),特征值问题(盒子中的粒子,谐波振荡器等。),通过屏障,坐标和动量表示的波动功能,换向器和海森堡不确定性原理,状态向量的迪拉克符号,运动中心的运动:轨道角动量,角动量,角度动量代数,自旋,自旋,添加了角臂;氢原子,严格的gerlach实验,时间独立的扰动理论和应用,变分方法,依赖时间的扰动理论和费米的黄金法则,选择规则。相同的粒子,保利排除原理,自旋统计量连接。V. Thermodynamic and Statistical Physics Laws of thermodynamics and their consequences, Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria, Phase space, Micro- and Macro-states, Micro- canonical, canonical and grand-canonical ensembles, partition functions, Free energy and its connection with thermodynamic quantities, Classical and quantum statistics, Ideal Bose and Fermi gases, Principle of detailed平衡,黑体辐射和普朗克的分布定律,扩散方程,随机步行和布朗运动。
• 衍射光学(衍射光学元件的设计、仿真和制造、应用); • 平面光学结构(波导、光子晶体、共振结构、布拉格光栅); • 高光谱系统(光学方案、色散元件、光谱滤波器); • 纳米光子学(纳米光子学元件的设计、仿真和制造、等离子体、超表面); • 光学传感系统、信息传输和处理(光学计算、光学成像系统建模、光学神经网络、光纤、自由空间中的信息传输); • 奇异光学(光学涡旋的产生和记录、光学涡旋的传播和聚焦、圆柱矢量光束、自旋轨道转换)。 第 2 节“地球遥感中的信息技术”