我想强调具有里程碑意义的 2010 年 NASA 授权法案。当时 NASA 的载人航天计划处于一个特别不确定的时期。由于 2003 年哥伦比亚号事故引发的安全问题,航天飞机即将退役,NASA 无法将宇航员运送到国际空间站。NASA 的后续计划 Constellation 超出预算,进度落后。NASA 的载人太空探索未来发展方向尚未达成共识。为了给 NASA 指明方向,我跨越党派界限,与来自德克萨斯州的参议员 Kay Bailey Hutchison 合作。我们达成了一项妥协方案,将多个派系团结在一起,使 NASA 走上了目前政府和商业载人航天任务的双重道路。此外,该法案还授权该机构平衡科学、探索和技术计划组合。
个人简介 Eberhard Gill 自 1989 年至 2006 年一直在德国航空航天中心 (DLR) 担任研究员,研究领域为卫星精确定轨、自主导航和航天器编队飞行。他曾担任多项国际地球和深空航天任务的联合研究员和首席研究员。他为 BIRD 微型卫星开发了基于 GPS 的机载导航系统,为 Prisma 编队飞行任务开发了基于 GPS 的制导、导航和控制系统。自 2007 年起,他担任代尔夫特理工大学 (TU Delft) 空间系统工程系主任。该系主任开发了纳米卫星 Delfi-C3,该卫星于 2008 年发射并成功运行,以及 2013 年发射的 Delfi-Next 纳米卫星。自 2013 年起,他还担任代尔夫特理工大学航空航天工程学院空间工程系主任。自 2015 年起,他担任代尔夫特空间研究所的创始主任。
与其预见和准备应对太空任务中可能出现的所有机器故障、事故和其他挑战,不如利用增材制造的灵活性进行“太空制造”(ISM),这似乎是合乎逻辑的。载人航天任务依赖于复杂的设备,其安全运行是一项巨大的挑战。考虑到载人登月和火星任务的绝对距离,从地球运送用于维修和更换丢失设备的备件将需要太多时间。由于设计灵活性高,并且能够直接从计算机辅助模型制造即用型组件,增材制造技术在这种情况下似乎极具吸引力。此外,还需要适当的技术来制造宇航员在月球和火星上长期居住的建筑栖息地以及材料/原料。将设备和材料送入太空的能力不仅非常有限且成本高昂,而且还引发了人们对地球环境问题的担忧。因此,并非所有材料都能从地球运送,人们正在设想利用原地资源的战略,即原地资源利用(ISRU)。对于复杂零件和设备的制造以及大型基础设施,需要开发适当的太空材料加工技术。
什么是太空对接? 太空对接是两个航天器或模块在太空中相互连接或附着的过程。这项技术允许航天器在轨道上对接,以实现特定目标。对接过程通常涉及一艘航天器(追逐者)接近另一艘航天器或空间站(目标)并与其对齐,以进行物理连接。 1. 空间站组装:对接是建造大型太空结构(如空间站)的关键,空间站中多个模块分别发射,然后在轨道上对接在一起。 2. 卫星维修:对接使航天器能够与卫星连接,以便在轨道上加油、维修或升级,从而延长卫星的使用寿命,而无需发射替换件。 3. 机组人员转移:对于载人航天任务,对接允许宇航员在航天器之间或航天器与空间站之间转移。 4. 资源共享:对接的航天器可以传输补给、电力和数据,支持深空探索等长期任务。太空对接是如何进行的
摘要:中国科学院国家空间科学中心是中国空间科学的门户,统筹管理全国科学卫星任务,是中国第一颗人造卫星“东方红一号”的诞生地。在60多年的发展历程中,国家空间科学中心牵头实施了中国第一个科学驱动的航天任务“双星计划”,并陆续实施了暗物质粒子探测器(悟空号)、量子实验卫星(墨子号)、硬X射线调制望远镜(慧马号)、太极一号、空间太阳天文台(夸父号)、爱因斯坦探测器(EP)等一批国家空间科学战略优先项目一、二期科学任务。目前,我国空间科学卫星系列已经基本形成,取得了丰硕的科研成果。未来,中欧联合发射的太阳风磁层电离层链路探测器(SMILE)也将于2025年发射。此外,刚刚发布的《国家中长期空间科学发展规划(2024-2050)》是我国首部国家级规划,确定了五大科学主题。围绕这些主题展开的一系列未来科学任务,将深化人类对宇宙的科学认识。
美国宇航局有多个负责太空可持续性的组织。任务理事会执行航天任务并开发相关技术。总工程师办公室和安全与任务保障办公室是技术主管部门,制定与碎片减缓相关的政策。会合评估风险分析计划办公室和多任务自动深空会合评估流程致力于防止美国宇航局的无人航天器与被跟踪的太空物体相撞。约翰逊航天中心飞行运营理事会的轨迹运营官致力于防止美国宇航局的载人航天器与被跟踪的太空物体相撞。轨道碎片计划办公室描述轨道碎片环境并支持碎片减缓。技术、政策和战略办公室进行分析,为太空可持续性的政策和技术投资决策提供信息。发射服务办公室采购运载火箭并评估其相关的轨道碎片风险。此外,发射服务办公室还负责协调 NASA 对联邦航空管理局、国家海洋和大气管理局、联邦通信委员会和国家电信和信息管理局颁发的所有轨道级联邦许可的审查和建议。总法律顾问办公室提供法律建议。国际和机构间关系办公室负责协调国际和机构间伙伴关系、白宫政策制定和联合国活动。
摘要 机组人员的表现高度依赖于航天器的设计和操作交互,并受各种航天环境参数的影响。当前载人航天任务设计流程面临的挑战是包括对机组人员表现预测的各种影响,无论是正面的还是负面的,这些影响都会影响对安全关键任务的分析准确性和系统的整体运行。本研究的目的是提出一个框架,该框架将设计评估和运行效率因素与三个综合机组人员表现指标相结合,旨在为评估航天器设计方案提供一种更加以人为本的方法。为了开发这样一个框架,首先采用系统方法来识别、分类和组织与机组人员表现相关的术语。从类似行业评估了绩效衡量技术和实施理念,以从更广泛的地面知识库中获得见解。来自此上下文的各种术语、定义和方法被汇总到拟议的航天机组人员表现框架中(如适用)。该框架旨在为设计师提供指导,作为一种预测手段,通过标准化性能反馈数据来评估系统如何有效地容纳和利用机组人员。
1969 年 7 月 20 日,马德里附近的弗雷斯内迪利亚斯控制站收到了人类从月球表面发来的第一条消息。“这是人类自身的一小步,却是人类的一大步”,这是阿波罗 11 号任务指挥官尼尔·阿姆斯特朗写下的历史名言。如今,在阿姆斯特朗完成这一史诗级成就的 50 年之后,人类的太空探索被普遍认为是一项极其令人兴奋和有吸引力的挑战,也是改善地球人类生活的科学技术进步的强大助推器。尽管有一些批评(少数,但意义重大)质疑其高昂的成本(Rinaldi 2016),但事实确实如此。在月球和火星上建立永久定居点正日益成为一项现实的事业。经过十年的成功火星探测,欧空局和美国宇航局,以及最近来自亚洲发展中国家的机构,都在努力推动载人航天任务,首先是登月,然后是火星。欧洲航天局 (ESA) 坚持这些目标,并坚决支持和参与这些计划,西班牙是其积极成员之一。
生命周期评估 (LCA) 是一种标准化的分析方法,用于科学地量化产品、流程或服务在整个生命周期内对环境的影响。在欧洲航天领域,LCA 的应用和重要性近年来呈指数级增长,甚至开始与采购流程交织在一起。因此,这项技术很有可能在 2020 年前成为欧洲航天任务设计的共同要素。相比之下,美国在空间生命周期评估方面开展的工作很少,这意味着该国在考虑其航天作业的生命周期环境影响的能力方面开始落后于其他国家。由于与欧洲采购政策不一致或不遵守,这可能会在不久的将来成为美国原始设备制造商 (OEM) 和供应商面临的严重问题,有可能导致大面积的供应链中断。因此,本研究考察了美国在太空资产生命周期评估方面落后于欧洲的程度以及由此带来的风险。然而,太空生命周期评估的确定优势凸显了该方法除了符合政策要求之外,还可以成为进一步推动美国太空领域商业成功的不可或缺的机制。因此,我们提出了一系列建议,鼓励美国太空领域加强对该概念的研究和开发,将其作为可持续全球太空经济的基础原则。
航天任务中经常出现的极端温度或生理要求高的环境对飞行员和宇航员构成了很高的热应激风险,这可能导致中暑和人体性能下降。这在军用飞机中尤其普遍,因为军用飞机的许多飞行研究设施和机场都位于炎热干旱的沙漠或高湿度的热带气候中。这些环境中的高温会加剧飞行员因其他生理和环境压力而产生的热应激的严重程度。为了测量热应激水平的关键生物指标——核心体温,我们提出了一种非侵入性方法,用于在真实的开放世界环境中使用移动生物传感器测量心率和皮肤温度来测量极端高温应激下的受试者。作为在极端热环境中操作的飞行员的模拟,我们利用了对连续数小时暴露在汽车驾驶舱内高热应激下的专业赛车手的观察结果。驾驶员所经历的条件不仅包括分层防护设备产生的热应激,还包括来自操作环境和车辆的热应激。卡尔曼滤波器旨在利用车手心率和皮肤温度传感器生成的线性模型来预测核心体温。从 4 位不同车手的 15 场比赛中获得的数据用于训练线性模型和