更远的地方是太阳对流区,能量以湍流翻腾运动的形式传输,类似于一锅沸腾的汤。可见表面,即光球层,厚度只有约 400 公里。在光球层上方,我们发现了色球层,这是一层薄薄的热气体,延伸至几千公里。在色球层上方是日冕,即太阳大气的最外层。
背景。在观测和模拟中,人们在光球层、色球层和低日冕中发现了涡流。有人认为涡流在将能量和等离子体引入日冕方面发挥着重要作用。然而,涡流对日冕的影响尚未在现实环境中直接研究过。目的。我们使用高分辨率日冕环模拟研究涡流对日冕加热的作用。涡流不是人为驱动的,而是由磁对流自洽产生的。方法。我们使用 MURaM 代码执行了 3D 电阻(磁流体动力学)MHD 模拟。在笛卡尔几何中研究孤立的日冕环使我们能够解析环内部的结构。我们进行了统计分析,以确定涡流特性与色球层到日冕高度的关系。结果。我们发现,注入环路的能量是由强磁性元素内部相干运动产生的。由此产生的坡印廷通量的很大一部分通过涡流管穿过色球层,从而在光球层和日冕之间形成磁连接。涡流可以形成连续的结构,达到日冕的高度,但在日冕本身中,涡流管会变形,并最终随着高度的增加而失去其特性。涡流在色球层和日冕中都显示出向上指向的坡印廷通量和加热速率增加,但随着高度的增加,其影响变得不那么明显。结论。虽然涡流在色球层和低日冕中的能量传输和结构中起着重要作用,但它们在更高大气层中的重要性尚不清楚,因为漩涡与周围环境的区分度较差。到达日冕的涡流管揭示了与日冕发射的复杂关系。
作为太空创新领域的领导者,该客户经常与 NASA 合作开发太空探索技术和仪器,包括用于监测和记录某些太空活动的仪器。其中一个例子包括界面区域成像光谱仪 (IRIS) 任务的航天器和仪器。IRIS 由洛克希德马丁公司在帕洛阿尔托的工厂设计和建造,并由洛克希德马丁公司在挪威航天局的支持下运营。该任务的目标是通过追踪等离子体和能量流入日冕和日光层来进一步了解太阳与地球之间的联系,此前,日冕和日光层的观测和研究一直颇具挑战性。IRIS 使团队能够获得高分辨率的太阳色球层紫外线光谱和图像,特别是与太阳风或太空天气相关的图像。自 2013 年发射以来,IRIS 已成功绕地球飞行了约 50,000 圈,收集了许多有用的图像。
背景。日冕环是太阳高层大气的基本构成要素,在极紫外和 X 射线中可见。了解日冕环如何产生能量、构造和演化是理解恒星日冕的关键。目的。我们在此研究光球磁对流如何产生加热日冕环的能量,并将其传输到高层大气中,以及日冕磁环的内部结构如何形成。方法。在 3D 磁流体动力学模型中,我们使用 MURaM 代码研究了一个孤立的日冕环,其两个足点都位于对流区内的浅层中。为了解决其内部结构,我们将计算域限制为一个矩形框,其中包含一个日冕环作为拉直的磁通量管。考虑了场对准热传导、光球层和色球层的灰辐射传输以及日冕中的光学薄辐射损失。足点被允许与周围的颗粒物自洽地相互作用。结果。环被坡印廷通量加热,该通量是通过光球中单个磁场浓度的小尺度运动自洽产生的。由于足点运动,大气上层形成了湍流。我们几乎看不到来自给定足点的不同光球浓度的磁通量管大规模编织加热的迹象。合成发射,就像大气成像组件或 X 射线望远镜所观察到的那样,揭示了响应加热事件而形成的瞬态亮线。总体而言,我们的模型粗略地再现了在日冕环(子结构)内观察到的等离子体的性质和演化。结论。利用这个模型,我们可以建立一个连贯的图像,展示加热太阳表面附近高层大气的能量通量是如何产生的,以及这个过程是如何驱动和控制日冕环的加热和动态的。
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。