方法和结果:基于可溶性环氧化物水解酶抑制剂和对接研究的结构活性关系,一些具有酰胺部分和三唑环的新型化合物分别设计为第一和第二药物学团。这些结构是通过4步反应以适当的产率合成的。最初,将4-硝基苯甲酰氯与氢津水合反应,然后在苯硝基菌存在和催化量碘化物的情况下反应,关闭1,2,4-三唑。最终产物是通过还原硝基组和与各种苯甲酰氯化物的反应获得的。对建立设计的SEH抑制剂的对接研究证实,类似物的酰胺组适当地安装在SEH的活性位置,并且与Tyr466和Asp335的氨基酸具有合适的距离,以进行有效的氢键。这些新型化合物以适当的产率合成,并通过包括IR,质量,HNMR和C NMR光谱的仪器方法批准它们的结构。
氯吡格雷是一种前药,需要对活性代谢产物的生物转化。这是通过肝细胞色素P450(CYP)2C19酶发生的,该酶与质子泵抑制剂(PPI)使用的代谢途径相同。从理论上讲,当氯吡格雷和PPI(如奥美拉唑)同时给出时,这可能会导致竞争性抑制。反过来,活性氯吡格雷部分的浓度降低可能会导致对血小板聚集因子的影响降低。虽然最近的荟萃分析结合了PPI和氯吡格雷使用的观察队列和随机对照试验(RCT)表现出与CV事件风险的增加相关;重要的是要注意,当评估仅限于RCT和观察群体的倾向分数匹配(PSM)时,这种相关性的重要性就会丢失。4-8
已确定的可指导治疗选择的预后因素包括疾病分期、激素受体 (HR) 状态、人表皮生长因子受体 2 (HER2) 受体状态以及乳腺癌易感基因 1 和 2 (BRCA1 和 BRCA2) 中是否存在种系突变。据估计,大约 70% 的乳腺癌患者患有 HR 阳性和 HER2 阴性疾病;15% 患有 HR 阴性和 HER2 阴性疾病(称为三阴性乳腺癌 [TNBC]);15% 患有 HER2 阳性疾病(这一亚群超出了本文的讨论范围)。7,8 大约 5% 到 10% 的乳腺癌患者、9,10 以及大约 9% 到 18% 的 TNBC 患者患有 BRCA1 和 BRCA2 的种系突变。 11, 12 大多数 (70%) 携带生殖系 BRCA1 突变的患者患有 TNBC,而 BRCA2 突变乳腺癌更常与 HR 阳性疾病相关。3, 13 报告的 5 年生存率为 26%(所有转移性乳腺癌患者)14 和 12%(转移性 TNBC)。12
阿立哌唑是一种部分激动剂,可对多巴胺D2受体发挥内在活性[1]。在中脑膜系统中,多巴胺D2受体的密度低,阿立哌唑的作用像拮抗剂,并且发挥抗精神病药作用[1]。因此,在该系统中,它充当“净拮抗剂” [2]。在结核病颌骨系统中,多巴胺D2受体密度很高,阿立哌唑充当激动剂,抑制了催乳素的分泌[3],因此充当“净激动剂” [2]。阿立哌唑经常在临床环境中与其他抗精神病药结合使用[4];这种使用是有理由的吗?如果激动剂作用于受体,则表现出生理活性。如果反向激动剂作用于受体,则表现出与激动活性相反的活性。拮抗剂没有自己的生理活动,但是如果存在激动剂或反向激动剂,对抗者会竞争地抑制其行为。拮抗剂不发挥生理活性,即使对受体作用也不会影响构成活动。拮抗剂对受体活动是“沉默”或“中性”。在生理活性的大小中,有一个“激动剂光谱”,从反向激动剂到完全激动剂[2]。在此范围内,随着一个人接近频谱的中间,激动剂和反向激动剂的生理活性逐渐减少,这与没有生理活性的拮抗剂相对应。通常,在临床环境中,激动剂和拮抗剂被认为是激动剂谱上的抗虫。但是,什么是对激动剂的抗原
阿尔茨海默氏病(AD)的特征是淀粉样蛋白β(Aβ)斑块和神经纤维缠结(NFTS)的进行性认可,这是AD发病机理的核心。神经薄缠结由tau蛋白纤维多孔组成,尤其是配对的螺旋纤维(PHFS)和直纤维(SFS)。在AD脑1-6的皮质提取中,它们的相对丰度先前已被描述为约90%的PHF和10%SF。具有β和tau配体的正电子发射断层扫描(PET)成像增强了对AD进展的诊断准确性和理解7。第一代tau-pet配体能够在体内检测tau缠结,并具有预测性的脑萎缩和认知能力下降的能力8 - 14。在此基础上,已经开发了第二代tau-pet配体,以改善特异性,药代动力学和亲和力。这些配体基于优化的化学结构,例如吡啶吲哚,苯基苯基苯基苯并苯二唑和喹啉/苯二唑唑衍生物15 - 17。特定于[18 f] MK-6240(如[18 f] MK-6240)(如[18 f] MK-6240)的吡咯吡啶基胺衍生物与第一代示踪剂相比,与Tau Tangles的结合优越。第二代tau-pet配体的发展,例如[18 F] MK-6240,对于早期AD检测,疾病分期和治疗干预评估至关重要。18 - 23。
摘要:先前的研究表明,Fe II / a -酮戊二酸依赖性双加氧酶 AsqJ 诱导了构巢曲霉中绿藻素生物合成的骨架重排,从苯并[1,4]二氮杂-2,5-二酮底物中生成喹诺酮骨架。我们报告称,AsqJ 催化了一个完全不同的额外反应,只需改变苯并二氮杂-2,5-二酮底物的取代基即可。这种新机制是通过底物筛选、功能探针的应用和计算分析建立的。AsqJ 从合适的苯并[1,4]二氮杂-2,5-二酮底物的杂环结构中切除 H 2 CO 以生成喹唑啉酮。这种新型 AsqJ 催化途径由复杂底物中的单个取代基控制。 AsqJ 这种独特的底物导向反应性使得能够有针对性地生物催化生成喹诺酮或喹唑啉酮,这两种生物碱框架具有特殊的生物医学意义。
药物筛选方法 确认方法 报告限值 6-乙酰吗啡 LC-TOF-MS 阿片类药物 LC-MSMS 2 ng/mL 7-氨基氯硝西泮 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS 5 ng/mL 7-氨基氟硝西泮 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS POS 7-氨基硝西泮 LC-TOF-MS Designer 苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 7-氨基硝西泮 LC-TOF-MS Designer 苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 对乙酰氨基酚 LC-TOF-MS 对乙酰氨基酚 HPLC 5 mg/L α-OH-阿普唑仑 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS 5 ng/mL阿普唑仑 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类 LC-AJS/LC-MSMS 5 ng/mL 阿米替林(确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 三环抗抑郁药 LC-MSMS 0.025 mg/L 异戊巴比妥** LC-TOF-MS(负模式) 巴比妥类 GC-MS 0.5 mg/L 苯丙胺 LC-TOF-MS 苯丙胺 LC-MSMS 0.01 mg/L 苯甲酰爱康宁(确认 > 50 ng/mL) LC-TOF-MS 可卡因及其代谢物 GC-MS 0.01 mg/L 溴唑仑 LC-TOF-MS 设计师 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 丁丙诺啡* LC-TOF-MS 丁丙诺啡、去甲丁丙诺啡和纳洛酮 LC-MSMS POS ≥ 0.2 ng/mL 安非他酮(确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基本药物 LC-MSMS 0.01 mg/L 布他比妥** LC-TOF-MS(负模式) 巴比妥类药物 GC-MS 0.5 mg/L 一氧化碳† CO-血氧仪分光光度法 CO-血氧仪分光光度法 ≥ 5% 饱和碳氧血红蛋白 羧基-THC(delta-9) 大麻素 LC-MSMS 筛选大麻素 LC-MSMS 5 ng/mL 卡立普多 LC-TOF-MS 或 GC-MS/NPD 卡立普多和甲丙氨酯 GC-MS 1 mg/L 氯氮卓LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类药物 LC-AJS/LC-MSMS 0.01 mg/L 西酞普兰(已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基础药物 LC-MSMS 0.01 mg/L 氯巴占 LC-TOF-MS Designer 苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 氯米帕明 LC-TOF-MS 或 GC-MS/NPD 三环抗抑郁药 LC-MSMS 0.025 mg/L 氯硝西泮 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS 0.01 mg/L 氯硝唑 LC-TOF-MS Designer 苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 可卡因乙烯 LC-TOF-MS 或GC-MS/NPD 可卡因及其代谢物 GC-MS 0.01 mg/L 可卡因 LC-TOF-MS 或 GC-MS/NPD 可卡因及其代谢物 GC-MS 0.01 mg/L 可待因 LC-TOF-MS 或 GC-MS/NPD 阿片类药物 LC-MSMS 0.01 mg/L 环苯扎林(已确认 > 100 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基础药物 LC-MSMS 0.01 mg/L 地洛西泮 LC-TOF-MS 设计苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 地莫西泮 LC-TOF-MS 设计苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 去烷基氟西泮 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS 5 ng/mL 地昔帕明 (已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 三环类抗抑郁药 LC-MSMS 0.025 mg/L 右美沙芬 (已确认 > 50 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基础药物 GC-MS/NPD 0.05 mg/L 地西泮 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类 LC-AJS/LC-MSMS 0.01 mg/L 苯海拉明 (已确认 > 50 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基础药物 GC-MS/NPD 0.05 mg/L 多塞平 (已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 三环类抗抑郁药液相色谱-串联质谱法 0.025 mg/L 艾司唑仑 LC-TOF-MS 苯二氮卓类 LC-AJS/LC-MSMS 5 ng/mL 艾司唑仑 LC-TOF-MS 苯二氮卓类 LC-AJS/LC-MSMS 5 ng/mL 芬太尼* LC-TOF-MS 或 GC-MS/NPD 或芬太尼 LC-MSMS 筛选芬太尼/去甲芬太尼 LC-MSMS 0.5 ng/mL 氟阿普唑仑 LC-TOF-MS 设计苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 氟溴西泮 LC-TOF-MS 设计苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 氟溴唑仑 LC-TOF-MS 设计苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 氟硝西泮 LC-TOF-MS苯二氮卓类药物 LC-AJS/LC-MSMS 5 ng/mL 氟硝唑仑 LC-TOF-MS Designer 苯二氮卓类药物 LC-MSMS POS ≥ 5 ng/mL 氟西汀(已确认 > 200 ng/mL)LC-TOF-MS 或 GC-MS/NPD 选择性血清素再摄取抑制剂(通过 GC-MS 测定)0.025 mg/L 氟西泮 LC-TOF-MS 苯二氮卓类药物 LC-AJS/LC-MSMS 5 ng/mL 加巴喷丁 LC-TOF-MS 加巴喷丁(通过 LC-MS 测定)1 mg/L 氢可酮 LC-TOF-MS 或 GC-MS/NPD 阿片类药物 LC-MSMS 0.01 mg/L 氢吗啡酮 LC-TOF-MS 阿片类药物 LC-MSMS 2 ng/mL 丙咪嗪(已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 三环类抗抑郁药 LC-MSMS 0.025 mg/L 劳拉西泮 LC-TOF-MS 苯二氮卓类 LC-AJS/LC-MSMS 5 ng/mL 劳甲西泮 LC-TOF-MS 设计器 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL MDA LC-TOF-MS 或 GC-MS/NPD 安非他明 LC-MSMS 0.01 mg/L MDMA LC-TOF-MS 或 GC-MS/NPD 安非他明 LC-MSMS 0.01 mg/L 美氯硝西泮 LC-TOF-MS 设计器 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 甲丙氨酯 LC-TOF-MS 或 GC-MS/NPD 卡立普多和甲丙氨酯 GC-MS 1 mg/L 美沙酮 LC-TOF-MS 或 GC-MS/NPD 美沙酮 LC-MS 0.01 mg/L 甲基苯丙胺 LC-TOF-MS 苯丙胺 LC-MSMS 0.01 mg/L 咪达唑仑 LC-TOF-MS 苯二氮卓类 LC-AJS/LC-MSMS 5 ng/mL 吗啡 LC-TOF-MS 阿片类 LC-MSMS 0.01 mg/L 纳洛酮* LC-TOF-MS 丁丙诺啡、去甲丁丙诺啡和纳洛酮 LC-MSMS POS ≥ 0.2 ng/mL n-去甲基氯巴占 LC-TOF-MS Designer 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 尼美西泮 LC-TOF-MS Designer 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 硝西泮 LC-TOF-MS Designer 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 硝唑仑 LC-TOF-MS Designer 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 去甲丁丙诺啡* LC-TOF-MS 丁丙诺啡、去甲丁丙诺啡和纳洛酮 LC-MSMS POS ≥ 0.2 ng/mL 去甲地西泮 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类 LC-AJS/LC-MSMS 0.01 mg/L 去甲芬太尼* LC-TOF-MS 芬太尼/去甲芬太尼 LC-MSMS POS ≥ 0.5 ng/mL 去甲替林 LC-TOF-MS 或 GC-MS/NPD 三环类抗抑郁药 LC-MSMS 0.025 mg/L o-去甲文拉法辛 (确认 > 200 ng/mL) LC-TOF-MS 选择基础药物 LC-MSMS 0.01 mg/L 奥沙西泮 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类 LC-AJS/LC-MSMS 0.01 mg/L 羟可酮 LC-TOF-MS 或 GC-MS/NPD 阿片类 LC-MSMS 0.01 mg/L 羟吗啡酮 LC-TOF-MS 阿片类 LC-MSMS 0.01 mg/L 戊巴比妥** LC-TOF-MS (负模式) 巴比妥类 GC-MS 0.5 mg/L 苯西泮 LC-TOF-MS 设计器 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 苯环利定 LC-TOF-MS 或 GC-MS/NPD 苯环利定GC-MS 0.01 mg/L 苯巴比妥** LC-TOF-MS(负模式)巴比妥类药物 GC-MS 0.5 mg/L 伪麻黄碱 LC-TOF-MS 或 GC-MS/NPD 安非他明 LC-MSMS 0.01 mg/L 吡唑仑 LC-TOF-MS 设计师 苯二氮卓类 LC-MSMS POS ≥ 5 ng/mL 喹硫平 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类和喹硫平 LC-MSMS 0.02 mg/L 司可巴比妥** LC-TOF-MS(负模式) 巴比妥类 GC-MS 0.5 mg/L 舍曲林(确认 > 200 ng/mL)LC-TOF-MS 或 GC-MS/NPD 选择性血清素再摄取抑制剂(通过 GC-MS POS ≥ 0.025 mg/L 替马西泮 LC-TOF-MS 或 GC-MS/NPD 苯二氮卓类 LC-AJS/LC-MSMS 0.01 mg/L THC(delta-9)LC-MSMS 大麻素筛选大麻素 LC-MSMS 1 ng/mL 曲马多 (已确认 > 100 ng/mL) LC-TOF-MS 或 GC-MS/NPD 基础药物 GC-MS/NPD 0.05 mg/L 曲唑酮 (已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 曲唑酮 LC-MS 0.02 mg/L 三唑仑 LC-TOF-MS 苯二氮卓类和喹硫平 LC-MSMS 0.01 mg/L 曲米帕明 (已确认 > 200 ng/mL) LC-TOF-MS 三环类抗抑郁药 LC-MSMS 0.025 mg/L 文拉法辛 (已确认 > 200 ng/mL) LC-TOF-MS 或 GC-MS/NPD 选择基础药物 LC-MSMS 0.01 mg/L 唑吡坦 LC-TOF-MS 或 GC-MS/NPD 唑吡坦 LC-MS 0.01 mg/L 唑吡坦 LC-TOF-MS 苯二氮卓类 LC-AJS/LC-MSMS POS ≥ 0.01 mg/L
HIV-1或人类免疫缺陷病毒1型,是一种全球大流行,影响了全球数百万个个体。作为该病毒生命周期的多功能酶,逆转录酶(RT)是药物发现的重要靶标。rt抑制剂主要分为两种类型:非核苷逆转录酶抑制剂(NNRTIS)和核苷逆转录酶抑制剂(NRTIS),尽管其他类别,例如核苷酸逆转录酶抑制剂(NRTIS),也存在。分子对接和药效团建模方法和DFT(密度功能理论)计算是HIV-1药物发现中的重要一步。在当前的研究中,我们在计算机方法中使用了探索新型苯咪唑唑酮(1,3-二氢-2H-2H-Benzimidazol-2-one)衍生物的结合模式。因此,对HIV-1 RT的野生型和突变形式进行了苯甲酰唑酮化合物,包括K103N,Y181C和双突变体K103N/Y181C。分子对接的结果使我们能够选择两种苯甲酰唑酮化合物(L15和L17)作为促进具有良好结合亲和力的抑制剂,不仅与野生型HIV -1(L15:-11.5:-11.5 kcal/mol/mol和L17:-11.4:11.4 kcal/mol),而且还针对Mol Y181和2 Kc/Mol Y181和2 lt Y181。 L17:-10.1 kcal/mol),K103N(L15:-11.5 kcal/mol和L17:-11.6 kcal/mol)和双突变体K103N/Y181C(L15:-11.1 kcal/mol/mol和L17:-9.9 kcal/mol)。此外,设计的配体的特征是基于ADMET(吸收,分布,代谢,排泄和毒性)的理想药代动力学特性。在这项工作结束时,对候选药物(L15和L17)进行了返回研究,以简化其合成。
CYP3A4 的强效抑制剂(例如克拉霉素、酮康唑、伊曲康唑、伏立康唑、泰利霉素、茚地那韦、奈非那韦、利托那韦、沙奎那韦) CYP3A4 的强效或中效诱导剂(例如卡马西平、苯妥英、利福平、苯巴比妥、波生坦、依法韦仑、圣约翰草) 如果同时使用以下药物,则应在 48 小时内避免服用另一剂 rimegepant(例如,不能服用额外剂量进行中止治疗) CYP3A4 的中效抑制剂或 p-糖蛋白的强效抑制剂(例如地尔硫卓、红霉素、氟康唑、环孢素、胺碘酮、维拉帕米、奎尼丁) 如果相互作用药物的处方是短期的,例如克拉霉素,如果没有其他无相互作用的药物可供选择,则可在整个治疗过程中停用 Rimegepant。副作用 恶心、过敏反应。
8。doğanİ.s。,Gümüşm.k。,Gorobets N.Y.,Reis R.,Orak D.,Sipahi H.等。甲诺的体外细胞毒性[1,2,4]三唑 - [1,5-C] [1,3,5]苯佐昔二氮基衍生物及其对亚硝酸盐和前列腺素E2(PGE2)水平的影响。药物化学杂志,56(6):769-776,2022
